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Chap. 1: Digital Logic Circuits 

• Logic Gates, • Boolean Algebra• Logic Gates, • Boolean Algebra
• Map Simplification, • Combinational Circuits
• Filp-Flops, • Sequential Circuits

Chap. 2: Digital ComponentsChap. 2: Digital Components

• Integrated Circuits, • Decoders, • Multiplexers
• Registers, • Shift Registers, • Binary Counters
• Memory Unit• Memory Unit

Chap. 3: Data Representation

• Data Types, • Complements
• Fixed Point Representation
• Floating Point Representation
• Other Binary Codes, • Error Detection Codes
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• Other Binary Codes, • Error Detection Codes
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Chap. 4: Register Transfer and MicrooperationsChap. 4: Register Transfer and Microoperations

• Register Transfer Language, • Register Transfer
• Bus and Memory Transfers • Bus and Memory Transfers 
• Arithmetic Microoperations 
• Logic Microoperations, • Shift Microoperations
• Arithmetic Logic Shift Unit• Arithmetic Logic Shift Unit

Chap. 5: Basic Computer Organization and Design

• Instruction Codes, • Computer Registers
• Computer Instructions, • Timing and Control
• Instruction Cycle,• Instruction Cycle,
• Memory Reference Instructions
• Input-Output and Interrupt
• Complete Computer Description
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• Complete Computer Description
• Design of Basic Computer
• Design of Accumulator Logic
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Chap. 6: Programming the Basic ComputerChap. 6: Programming the Basic Computer

• Machine Language, • Assembly Language
• Assembler, • Program Loops
• Programming Arithmetic and Logic Operations• Programming Arithmetic and Logic Operations
• Subroutines, • Input-Output Programming

Chap. 7: Microprogrammed Control

• Control Memory, • Sequencing Microinstructions
• Microprogram Example, • Design of Control Unit
• Microinstruction Format

Chap. 8: Central Processing Unit

• General Register Organization
• Stack Organization, • Instruction Formats
• Addressing Modes
• Data Transfer and Manipulation

Computer Organization Computer Architecture

• Data Transfer and Manipulation
• Program Control
• Reduced Instruction Set Computer
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Chap. 9: Pipeline and Vector ProcessingChap. 9: Pipeline and Vector Processing

• Parallel Processing, • Pipelining
• Arithmetic Pipeline, • Instruction Pipeline
• RISC Pipeline, • Vector Processing• RISC Pipeline, • Vector Processing

Chap. 10: Computer Arithmetic

• Arithmetic with Signed-2's Complement Numbers• Arithmetic with Signed-2's Complement Numbers
• Multiplication and Division Algorithms
• Floating-Point Arithmetic Operations
• Decimal Arithmetic Unit• Decimal Arithmetic Unit
• Decimal Arithmetic Operations

Chap. 11: Input-Output OrganizationChap. 11: Input-Output Organization

• Peripheral Devices, • Input-Output Interface
• Asynchronous Data Transfer, • Modes of Transfer
• Priority Interrupt, • Direct Memory Access
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• Priority Interrupt, • Direct Memory Access
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Chap. 12: Memory Organization

• Memory Hierarchy, • Main Memory• Memory Hierarchy, • Main Memory
• Auxiliary Memory. • Associative Memory
• Cache Memory, • Virtual Memory

Chap. 13: Multiprocessors ()

• Characteristics of Multiprocessors• Characteristics of Multiprocessors
• Interconnection Structures
• Interprocessor Arbitration
• Interprocessor Communication/Synchronization
• Cache Coherence
• Interprocessor Communication/Synchronization
• Cache Coherence
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SIMPLE DIGITAL SYSTEMS
Register Transfer & -operations

• Combinational and sequential circuits (learned in Chapters 1 and 2)
can be used to create simple digital systems.can be used to create simple digital systems.

• These are  the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of
– the registers they contain, and
– the operations that they perform.– the operations that they perform.

• Typically,
– What operations are performed on the data in the registers– What operations are performed on the data in the registers
– What information is passed between registers

Computer Organization Computer Architecture
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REGISTER  TRANSFER  AND  MICROOPERATIONS
Register Transfer & -operations

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations• Shift Microoperations

• Arithmetic Logic Shift Unit

Computer Organization Computer Architecture
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MICROOPERATIONS (1)
Register Transfer LanguageRegister Transfer & -operations

• The operations on the data in registers are called 
microoperations.microoperations.

• The functions built into registers are examples of 
microoperations

– Shift
– Load
– Clear
– Increment
– …– …

Computer Organization Computer Architecture
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MICROOPERATION (2)
Register Transfer LanguageRegister Transfer & -operations

An elementary operation performed (during 
one clock pulse), on the information stored 
in one or more registersin one or more registers

1 clock cycleALU
(f)

Registers
(R)

1 clock cycle

R  f(R, R)

Computer Organization Computer Architecture

f:  shift, load, clear, increment, add, subtract, complement,
and, or, xor, …
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ORGANIZATION OF A DIGITAL SYSTEM
Register Transfer LanguageRegister Transfer & -operations

• Definition of the (internal) organization of a computer

- Set of registers and their functions

- Microoperations set 

Set of allowable microoperations provided
by the organization of the computer

- Control signals that initiate the sequence of 
microoperations (to perform the functions)

Computer Organization Computer Architecture
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REGISTER  TRANSFER LEVEL
Register Transfer LanguageRegister Transfer & -operations

• Viewing a computer, or any digital system, in this way is 
called the register transfer levelcalled the register transfer level

• This is because we’re focusing on
– The system’s registers– The system’s registers
– The data transformations in them, and
– The data transfers between them.

Computer Organization Computer Architecture



13

REGISTER  TRANSFER  LANGUAGE
Register Transfer LanguageRegister Transfer & -operations

• Rather than specifying a digital system in words, a specific 
notation is used, register transfer languagenotation is used, register transfer language

• For any function of the computer, the register transfer 
language can be used to describe the (sequence of) language can be used to describe the (sequence of) 
microoperations

• Register transfer language• Register transfer language
– A symbolic language
– A convenient tool for describing the internal organization of digital 

computers
– Can also be used to facilitate the design process of digital systems.– Can also be used to facilitate the design process of digital systems.

Computer Organization Computer Architecture
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DESIGNATION OF REGISTERS
Register Transfer LanguageRegister Transfer & -operations

• Registers are designated by capital letters, sometimes 
followed by numbers (e.g., A, R13, IR)followed by numbers (e.g., A, R13, IR)

• Often the names indicate function:
– MAR - memory address register
– PC - program counter
– IR - instruction register

• Registers and their contents can be viewed and represented in 
various waysvarious ways

– A register can be viewed as a single entity:

MAR

– Registers may also be represented showing the bits of data they contain

MAR

Computer Organization Computer Architecture
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DESIGNATION OF REGISTERS
Register Transfer LanguageRegister Transfer & -operations

- a register
- portion of a register

• Designation of a register

- portion of a register
- a bit of a register

• Common ways of drawing the block diagram of a register

R1
Register Showing individual bits

PC(H) PC(L)
15 8 7 0

7     6     5     4     3     2     1     0

R2
15 0

Numbering of bits Subfields
PC(H) PC(L)R2

Computer Organization Computer Architecture
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REGISTER  TRANSFER
Register TransferRegister Transfer & -operations

• Copying the contents of one register to another is a register 
transfer

• A register transfer is indicated as

R2  R1

– In this case the contents of register R2 are copied (loaded) into – In this case the contents of register R2 are copied (loaded) into 
register R1

– A simultaneous transfer of all bits from the source R1 to the 
destination register R2, during one clock pulse

– Note that this is a non-destructive; i.e. the contents of R1 are not – Note that this is a non-destructive; i.e. the contents of R1 are not 
altered by copying (loading) them to R2

Computer Organization Computer Architecture
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REGISTER  TRANSFER
Register TransferRegister Transfer & -operations

• A register transfer such as

R3  R5

Implies that the digital system hasImplies that the digital system has

– the data lines from the source register (R5) to the destination 
register (R3)

– Parallel load in the destination register (R3)
– Control lines to perform the action

Computer Organization Computer Architecture
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CONTROL FUNCTIONS
Register TransferRegister Transfer & -operations

• Often actions need to only occur if a certain condition is true
• This is similar to an “if” statement in a programming language
• In digital systems, this is often done via a control signal, called • In digital systems, this is often done via a control signal, called 

a control function
– If the signal is 1, the action takes place

• This is represented as:• This is represented as:

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into 
register R2”, i.e., if (P = 1)  then  (R2  R1)

Computer Organization Computer Architecture
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HARDWARE  IMPLEMENTATION  OF  CONTROLLED TRANSFERS
Register TransferRegister Transfer & -operations

Implementation of controlled transfer 
P:  R2 R1

Block diagram
ClockR2Control 

Circuit
LoadP

Timing diagram

ClockR2

R1

Circuit
n

t t+1Timing diagram

Transfer occurs here

Clock

Load

t t+1

Transfer occurs here

• The same clock controls the circuits that generate the control function
and the destination register

Computer Organization Computer Architecture

and the destination register
• Registers are assumed to use positive-edge-triggered flip-flops
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SIMULTANEOUS OPERATIONS
Register TransferRegister Transfer & -operations

• If two or more operations are to occur 
simultaneously, they are separated with commas

P:  R3  R5, MAR  IR

• Here, if the control function P = 1, load the contents 
of R5 into R3, and at the same time (clock), load the 
contents of register IR into register MAR

Computer Organization Computer Architecture
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BASIC SYMBOLS FOR REGISTER TRANSFERS
Register TransferRegister Transfer & -operations

Capital letters      Denotes a register MAR, R2
Symbols Description                                       Examples

Capital letters      Denotes a register MAR, R2
& numerals               

Parentheses ()     Denotes a part of a register R2(0-7), R2(L)

Arrow     Denotes transfer of information R2  R1Arrow     Denotes transfer of information R2  R1
Colon    : Denotes termination of control function P:
Comma  , Separates two micro-operations A  B,  B  A

Computer Organization Computer Architecture
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CONNECTING REGISTRS
Register TransferRegister Transfer & -operations

• In a digital system with many registers, it is impractical to 
have data and control lines to directly allow each register 
to be loaded with the contents of every possible other to be loaded with the contents of every possible other 
registers

• To completely connect n registers  n(n-1) lines• To completely connect n registers  n(n-1) lines
• O(n2) cost

– This is not a realistic approach to use in a large digital system

• Instead, take a different approach
• Have one centralized set of circuits for data transfer – the 

busbus
• Have control circuits to select which register is the source, 

and which is the destination

Computer Organization Computer Architecture
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BUS  AND  BUS  TRANSFER
Bus is a path(of a group of wires) over which information is 

Bus and Memory TransfersRegister Transfer & -operations

Bus is a path(of a group of wires) over which information is 
transferred, from any of several sources to any of several destinations.

From a register to bus: BUS  RFrom a register to bus: BUS  R

Register A Register B Register C Register D

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Register A Register B Register C Register D

Bus lines

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

B C D1 1 1 B C D2 2 2 B C D3 3 3 B C D4 4 4

0 0 0 04 x1
MUX

4 x1
MUX

4 x1
MUX

4 x1
MUX

x
y

select

0 0 0 0

Computer Organization Computer Architecture

4-line bus
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TRANSFER  FROM  BUS  TO  A  DESTINATION  REGISTER
Bus lines

Bus and Memory TransfersRegister Transfer & -operations

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

Load

2 x 4
Decoder

D0 D1 D2 D3z
w

Select E (enable)

Three-State Bus Buffers
Output Y=A if C=1
High-impedence if C=0Normal input A

Control input C

Bus line with three-state buffers

Control input C

A0
Bus line for bit 0

Select
0
1

S0

A0
B0
C0
D0

Computer Organization Computer Architecture

Select
Enable

0
1
2
3

S0
S1
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BUS  TRANSFER  IN  RTL
Bus and Memory TransfersRegister Transfer & -operations

• Depending on whether the bus is to be mentioned 
explicitly or not, register transfer can be indicated as 
eithereither

or
R2 R1

• In the former case the bus is implicit, but in the latter, it is 

BUS R1, R2  BUS

• In the former case the bus is implicit, but in the latter, it is 
explicitly indicated

Computer Organization Computer Architecture
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MEMORY (RAM)
Bus and Memory TransfersRegister Transfer & -operations

• Memory (RAM) can be thought as a sequential circuits 
containing some number of registers

• These registers hold the words of memory
• Each of the r registers is indicated by an address
• These addresses range from 0 to r-1
• Each register (word) can hold n bits of data• Each register (word) can hold n bits of data
• Assume the RAM contains r = 2k words. It needs the 

following
– n data input lines data input lines– n data input lines
– n data output lines
– k address lines
– A Read control line

data input lines

n

address lines
– A Write control line

n

k
Read

Write

RAM
unit

Computer Organization Computer Architecture

data output lines

n
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MEMORY  TRANSFER
Bus and Memory TransfersRegister Transfer & -operations

• Collectively, the memory is viewed at the register level as 
a device, M.

• Since it contains multiple locations, we must specify 
which address in memory we will be usingwhich address in memory we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by 
putting the desired address in a special register, the 
Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the MAR get 
sent to the memory unit’s address lines

M

AR Memory
unit

Read

Write

M

Computer Organization Computer Architecture

Data inData out
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MEMORY  READ
Bus and Memory TransfersRegister Transfer & -operations

• To read a value from a location in memory and load it into 
a register, the register transfer language notation looks a register, the register transfer language notation looks 
like this:

R1  M[MAR]

• This causes the following to occur
– The contents of the MAR get sent to the memory address lines
– A Read (= 1) gets sent to the memory unit– A Read (= 1) gets sent to the memory unit
– The contents of the specified address are put on the memory’s 

output data lines
– These get sent over the bus to be loaded into register R1– These get sent over the bus to be loaded into register R1

Computer Organization Computer Architecture
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MEMORY  WRITE
Bus and Memory TransfersRegister Transfer & -operations

• To write a value from a register to a location in memory 
looks like this in register transfer language:looks like this in register transfer language:

M[MAR]  R1

• This causes the following to occur
– The contents of the MAR get sent to the memory address lines
– A Write (= 1) gets sent to the memory unit
– The values in register R1 get sent over the bus to the data input lines 

of the memory
– The values get loaded into the specified address in the memory

Computer Organization Computer Architecture
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SUMMARY OF R. TRANSFER MICROOPERATIONS
Bus and Memory TransfersRegister Transfer & -operations

A  B Transfer content of reg. B into reg. A
AR DR(AD) Transfer content of AD portion of reg. DR into reg. ARAR DR(AD) Transfer content of AD portion of reg. DR into reg. AR
A  constant Transfer a binary constant into reg. A
ABUS  R1, Transfer content of R1 into bus A and, at the same time, 
R2 ABUS transfer content of bus A into R2                R2 ABUS transfer content of bus A into R2                
AR Address register
DR Data register
M[R] Memory word specified by reg. RM[R] Memory word specified by reg. R
M Equivalent to M[AR]
DR  M Memory read operation: transfers content of

memory word specified by AR into DRmemory word specified by AR into DR
M  DR Memory write operation: transfers content of

DR into memory word specified by AR

Computer Organization Computer Architecture
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MICROOPERATIONS
Arithmetic MicrooperationsRegister Transfer & -operations

• Computer system microoperations are of four types:• Computer system microoperations are of four types:

- Register transfer microoperations
- Arithmetic microoperations- Arithmetic microoperations
- Logic microoperations
- Shift microoperations

Computer Organization Computer Architecture



32

ARITHMETIC  MICROOPERATIONS
Arithmetic MicrooperationsRegister Transfer & -operations

• The basic arithmetic microoperations are
– Addition
– Subtraction
– Increment– Increment
– Decrement

• The additional arithmetic microoperations are
– Add with carry– Add with carry
– Subtract with borrow
– Transfer/Load
– etc. …

Summary of Typical Arithmetic Micro-Operations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3
R3  R1 - R2 Contents of R1 minus R2 transferred to R3R3  R1 - R2 Contents of R1 minus R2 transferred to R3
R2  R2’ Complement the contents of R2 
R2  R2’+ 1 2's complement the contents of R2 (negate)
R3  R1 + R2’+ 1 subtraction

Computer Organization Computer Architecture

R1  R1 + 1 Increment
R1  R1 - 1 Decrement
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BINARY  ADDER / SUBTRACTOR / INCREMENTER
Arithmetic MicrooperationsRegister Transfer & -operations

FA

B0 A0

C0FA

B1 A1

C1FA

B2 A2

C2FA

B3 A3

C3
Binary Adder

S0S1S2S3C4

Binary Adder-Subtractor
B0 A0B1 A1B2 A2B3 A3

FA C0C1FAC2FAC3FA

M

FA

S0

C0C1FA

S1

C2FA

S2

C3FA

S3C4

Binary Incrementer A0 1A1A2A3Binary Incrementer

HA
x y

C S

A0 1

HA
x y

C S

A1

HA
x y

C S

A2

HA
x y

C S

A3

Computer Organization Computer Architecture

S0S1S2S3C4
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ARITHMETIC  CIRCUIT
S1Cin

Arithmetic MicrooperationsRegister Transfer & -operations

S1
S0
0
123

4x1
MUX

X0

Y0

C0

C1
D0FA

A0

B0

S0S1Cin

S1
S0
0
123

4x1
MUX

X1

Y1

C1

C2
D1FA

S1
X2 C2

D2FA

A1

B1

A2
S1
S0
0
123

4x1
MUX

Y2 C3
D2FA

S1
S0
0
1

4x1

X3

Y3

C3

C4
D3FA

B2

A3

B3 0
123

4x1
MUX

Y3 C4

Cout

B3

0 1

S1 S0 Cin Y Output Microoperation
0        0 0 B D = A + B Add
0        0 1 B D = A + B + 1 Add with carry
0 1 0 B’ D = A + B’ Subtract with borrow
0        1 1 B’ D = A + B’+ 1 Subtract
1        0 0 0 D = A Transfer A                                

Computer Organization Computer Architecture

1        0 0 0 D = A Transfer A                                
1        0 1 0 D = A + 1 Increment A
1        1 0 1 D = A - 1 Decrement A
1        1 1 1 D = A Transfer A                                
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LOGIC  MICROOPERATIONS
Logic MicrooperationsRegister Transfer & -operations

• Specify binary operations on the strings of bits in registers
– Logic microoperations are bit-wise operations, i.e., they work on the 

individual bits of data
– useful for bit manipulations on binary data – useful for bit manipulations on binary data 
– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can 
be defined over two binary input variablesbe defined over two binary input variables

0    0    0    0    0  …  1    1     1
0    1    0    0    0  …  1    1     1

A   B   F0 F1 F2 … F13 F14 F15

0    1    0    0    0  …  1    1     1
1    0    0    0    1  …  0    1     1
1    1    0    1    0  …  1    0     1

• However, most systems only implement four of these
– AND (), OR (), XOR (), Complement/NOT

• The others can be created from combination of these

Computer Organization Computer Architecture

• The others can be created from combination of these
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LIST  OF  LOGIC  MICROOPERATIONS
• List of Logic Microoperations

Logic MicrooperationsRegister Transfer & -operations

• List of Logic Microoperations
- 16 different logic operations with 2 binary vars.
- n binary vars  → functions2 2 n

• Truth tables for 16 functions of 2 variables and the
corresponding 16 logic micro-operations

Boolean
Function

Micro-
Operations Namex  0 0 1 1

y  0 1 0 1 Function Operations Namey  0 1 0 1
0 0 0 0 F0  = 0 F  0 Clear
0 0 0 1 F1  = xy             F  A  B AND
0 0 1 0 F2  = xy'            F  A  B’
0 0 1 1 F3  = x F  A Transfer A0 0 1 1 F3  = x F  A Transfer A
0 1 0 0 F4  = x'y            F  A’ B
0 1 0 1 F5  = y F  B Transfer B
0 1 1 0 F6  = x  y         F  A  B         Exclusive-OR
0 1 1 1 F7  = x + y         F  A  B                OR
1 0 0 0 F8  = (x + y)'      F  A  B)’            NOR1 0 0 0 F8  = (x + y)'      F  A  B)’            NOR
1 0 0 1 F9  = (x  y)'      F  (A  B)’    Exclusive-NOR
1 0 1 0 F10 = y'              F  B’             Complement B
1 0 1 1 F11 = x + y'        F  A  B
1 1 0 0 F12 = x' F  A’             Complement A
1 1 0 1 F13 = x' + y        F  A’ B

Computer Organization Computer Architecture

1 1 0 1 F13 = x' + y        F  A’ B
1 1 1 0 F14 = (xy)'          F  (A  B)’         NAND
1 1 1 1 F15 = 1               F  all 1's          Set to all 1's
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HARDWARE  IMPLEMENTATION  OF  LOGIC MICROOPERATIONS
Logic MicrooperationsRegister Transfer & -operations

B
A

Fi

i
i 0

1
4 X 1
MUX

S1

2

3

MUX

Select

S
S

1
0

0    0     F = A  B          AND
0    1     F = AB           OR

S1 S0 Output -operation
Function table

0    1     F = AB           OR
1    0     F = A  B          XOR
1    1     F = A’           Complement

Computer Organization Computer Architecture



38

APPLICATIONS OF LOGIC MICROOPERATIONS
Logic MicrooperationsRegister Transfer & -operations

• Logic microoperations can be used to manipulate individual 
bits or a portions of a word in a register

• Consider the data in a register A. In another register, B, is bit 
data that will be used to modify the contents of A

– Selective-set A  A + B
– Selective-complement A  A  B
– Selective-clear A  A • B’– Selective-clear A  A • B’
– Mask (Delete) A  A • B
– Clear A  A  B
– Insert A  (A • B) + C– Insert A  (A • B) + C
– Compare A  A  B
– . . . 

Computer Organization Computer Architecture
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SELECTIVE SET
Logic MicrooperationsRegister Transfer & -operations

• In a selective set operation, the bit pattern in B is used to set• In a selective set operation, the bit pattern in B is used to set
certain bits in A 

1 1 0 0 A1 1 0 0 At

1 0 1 0 B
1 1 1 0 At+1 (A  A + B)

• If a bit in B is set to 1, that same position in A gets set to 1, 
otherwise that bit in A keeps its previous value

Computer Organization Computer Architecture
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SELECTIVE COMPLEMENT
Logic MicrooperationsRegister Transfer & -operations

• In a selective complement operation, the bit pattern in B is • In a selective complement operation, the bit pattern in B is 
used to complement certain bits in A 

1 1 0 0 A1 1 0 0 At

1 0 1 0 B
0 1 1 0 At+1 (A  A  B)t+1

• If a bit in B is set to 1, that same position in A gets 
complemented from its original value, otherwise it is 
unchangedunchanged

Computer Organization Computer Architecture
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SELECTIVE CLEAR
Logic MicrooperationsRegister Transfer & -operations

• In a selective clear operation, the bit pattern in B is used to • In a selective clear operation, the bit pattern in B is used to 
clear certain bits in A 

1 1 0 0 A1 1 0 0 At

1 0 1 0 B
0 1 0 0 At+1 (A  A  B’)t+1

• If a bit in B is set to 1, that same position in A gets set to 0, 
otherwise it is unchanged

Computer Organization Computer Architecture
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MASK OPERATION
Logic MicrooperationsRegister Transfer & -operations

• In a mask operation, the bit pattern in B is used to clear• In a mask operation, the bit pattern in B is used to clear
certain bits in A 

1 1 0 0 A1 1 0 0 At

1 0 1 0 B
1 0 0 0 At+1 (A  A  B)t+1

• If a bit in B is set to 0, that same position in A gets set to 0, 
otherwise it is unchanged

Computer Organization Computer Architecture
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CLEAR OPERATION
Logic MicrooperationsRegister Transfer & -operations

• In a clear operation, if the bits in the same position in A and • In a clear operation, if the bits in the same position in A and 
B are the same, they are cleared in A, otherwise they are set 
in A

1 1 0 0 At

1 0 1 0 B
0 1 1 0 A (A  A  B)0 1 1 0 At+1 (A  A  B)

Computer Organization Computer Architecture
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INSERT OPERATION
Logic Microoperations

• An insert operation is used to introduce a specific bit pattern 

Register Transfer & -operations

• An insert operation is used to introduce a specific bit pattern 
into A register, leaving the other bit positions unchanged

• This is done as
– A mask operation to clear the desired bit positions, followed by– A mask operation to clear the desired bit positions, followed by
– An OR operation to introduce the new bits into the desired 

positions
– Example– Example

» Suppose you wanted to introduce 1010 into the low order 
four bits of A: 1101 1000 1011 0001 A (Original)

1101 1000 1011 1010 A (Desired)1101 1000 1011 1010 A (Desired)

» 1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 Mask1111 1111 1111 0000 Mask
1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits
1101 1000 1011 1010 A (Desired)

Computer Organization Computer Architecture

1101 1000 1011 1010 A (Desired)
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SHIFT  MICROOPERATIONS
Shift Microoperations

• There are three types of shifts

Register Transfer & -operations

• There are three types of shifts
– Logical shift
– Circular shift
– Arithmetic shift– Arithmetic shift

• What differentiates them is the information that goes into 
the serial input

Serial

• A right shift operation

Serial
input

• A left shift operation Serial
input

Computer Organization Computer Architecture
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LOGICAL SHIFT
Shift Microoperations

• In a logical shift the serial input to the shift is a 0.

Register Transfer & -operations

• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:• A right logical shift operation:
0

• A left logical shift operation:
0

• In a Register Transfer Language, the following notation is used
– shl for a logical shift left
– shr for a logical shift right
– Examples:

» R2  shr R2

Computer Organization Computer Architecture

» R2  shr R2
» R3  shl R3
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CIRCULAR SHIFT
Shift Microoperations

• In a circular shift the serial input is the bit that is shifted out of 

Register Transfer & -operations

• In a circular shift the serial input is the bit that is shifted out of 
the other end of the register.

• A right circular shift operation:• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil for a circular shift left– cil for a circular shift left
– cir for a circular shift right
– Examples:

» R2  cir R2

Computer Organization Computer Architecture

» R3  cil R3
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ARITHMETIC SHIFT
Shift Microoperations

• An arithmetic shift is meant for signed binary numbers 

Register Transfer & -operations

• An arithmetic shift is meant for signed binary numbers 
(integer)

• An arithmetic left shift multiplies a signed number by two
• An arithmetic right shift divides a signed number by two• An arithmetic right shift divides a signed number by two
• The main distinction of an arithmetic shift is that it must keep 

the sign of the number the same as it performs the 
multiplication or divisionmultiplication or division

• A right arithmetic shift operation:

sign
bit

• A left arithmetic shift operation:
0

sign
bit

Computer Organization Computer Architecture

bit
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ARITHMETIC SHIFT
Shift Microoperations

• An left arithmetic shift operation must be checked for the 

Register Transfer & -operations

• An left arithmetic shift operation must be checked for the 
overflow

0
sign

V
Before the shift, if the leftmost two
bits differ, the shift will result in an

sign
bit

V bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used• In a RTL, the following notation is used
– ashl for an arithmetic shift left
– ashr for an arithmetic shift right
– Examples:– Examples:

» R2  ashr R2
» R3  ashl R3

Computer Organization Computer Architecture
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HARDWARE  IMPLEMENTATION  OF  SHIFT  MICROOPERATIONS
Shift MicrooperationsRegister Transfer & -operations

Select 0 for shift right (down) 
1 for shift left (up)Serial

input (IR)

S
0
1

H0MUX

A0
S
0
1

H1MUX

A0

A1

A2

A3
S
0
1

H2MUX

A3

S
0
1

H3MUX

Serial
input (I ) 

Computer Organization Computer Architecture

Serial
input (IL) 
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ARITHMETIC  LOGIC  SHIFT  UNIT
Shift Microoperations

S3

Register Transfer & -operations

Arithmetic
Circuit

C
S3
S2
S1
S0

i

Di
Circuit

Logic

C 4 x 1
MUX

Select

0
1
2
3

F

E

i+1 i

iLogic
CircuitB

A
A
A

E

shr
shl

i
i

i+1
i-1

i

S3    S2    S1 S0 Cin Operation Function
0        0     0 0 0 F = A Transfer A
0        0     0      0 1 F = A + 1 Increment A
0        0     0      1 0 F = A + B Addition
0        0     0 1 1 F = A + B + 1     Add with carry
0        0     1 0 0 F = A + B’          Subtract with borrow0        0     1 0 0 F = A + B’          Subtract with borrow
0        0     1 0 1 F = A + B’+ 1     Subtraction
0        0     1 1 0 F = A - 1 Decrement A
0        0     1 1 1 F = A TransferA
0        1     0 0 X F = A  B AND
0        1     0 1 X F = A B OR
0        1     1 0 X F = A  B XOR

Computer Organization Computer Architecture

0        1     1 0 X F = A  B XOR
0        1     1 1 X F = A’ Complement A
1        0     X X X F = shr A Shift right A into F
1        1     X X X F = shl A Shift left A into F
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BASIC  COMPUTER  ORGANIZATION  AND  DESIGN
Basic Computer Organization & Design

• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

Computer Organization Computer Architecture

• Design of Accumulator Logic
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INTRODUCTION
Basic Computer Organization & Design

• Every different processor type has its own design (different 
registers, buses, microoperations, machine instructions, etc)

• Modern processor is a very complex device• Modern processor is a very complex device
• It contains

– Many registers
– Multiple arithmetic units, for both integer and floating point calculations
– The ability to pipeline several consecutive instructions to speed execution
– Etc.

• However, to understand how processors work, we will start with 
a simplified processor modela simplified processor model

• This is similar to what real processors were like ~25 years ago
• M. Morris Mano introduces a simple processor model he calls 

the Basic Computerthe Basic Computer
• We will use this to introduce processor organization and the 

relationship of the RTL model to the higher level computer 
processor

Computer Organization Computer Architecture

processor
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THE BASIC COMPUTER
Basic Computer Organization & Design

• The Basic Computer has two components, a processor and 
memorymemory

• The memory has 4096 words in it
– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long• Each word is 16 bits long

CPU RAM
0

015

Computer Organization Computer Architecture

4095
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INSTRUCTIONS
Instruction codesBasic Computer Organization & Design

• Program
– A sequence of (machine) instructions 

• (Machine) Instruction• (Machine) Instruction
– A group of bits that tell the computer to perform a specific operation

(a sequence of micro-operation) 

• The instructions of a program, along with any needed data • The instructions of a program, along with any needed data 
are stored in memory

• The CPU reads the next instruction from memory
• It is placed in an Instruction Register (IR)
• Control circuitry in control unit then translates the 

instruction into the sequence of microoperations instruction into the sequence of microoperations 
necessary to implement it

Computer Organization Computer Architecture
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INSTRUCTION FORMAT
Instruction codes

• A computer instruction is often divided into two parts

Basic Computer Organization & Design

• A computer instruction is often divided into two parts
– An opcode (Operation Code) that specifies the operation for that 

instruction
– An address that specifies the registers and/or locations in memory to – An address that specifies the registers and/or locations in memory to 

use for that operation
• In the Basic Computer, since the memory contains 4096 (= 

212) words, we needs 12 bit to specify which memory 
address this instruction will use address this instruction will use 

• In the Basic Computer, bit 15 of the instruction specifies 
the addressing mode (0: direct addressing, 1: indirect 
addressing)addressing)

• Since the memory words, and hence the instructions, are 
16 bits long, that leaves 3 bits for the instruction’s opcode

Opcode Address

Instruction Format
15 14 12 0

I
11

Computer Organization Computer Architecture

Addressing 
mode
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ADDRESSING MODES
Instruction codes

• The address field of an instruction can represent either

Basic Computer Organization & Design

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of the 

operand), or
– Indirect address: the address in memory of the address in memory of the data 

to use to use 

0 ADD 45722 1 ADD 30035

1350

Direct addressing Indirect addressing

Operand457

1350300

Operand1350

+ +

• Effective Address (EA)

AC AC

Computer Organization Computer Architecture

– The address, that can be directly used without modification to access an 
operand for a computation-type instruction, or as the target address for a 
branch-type instruction
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PROCESSOR REGISTERS
Instruction codesBasic Computer Organization & Design

• A processor has many registers to hold instructions, 
addresses, data, etc

• The processor has a register, the Program Counter (PC) that • The processor has a register, the Program Counter (PC) that 
holds the memory address of the next instruction to get

– Since the memory in the Basic Computer only has 4096 locations, the PC 
only needs 12 bits

• In a direct or indirect addressing, the processor needs to keep 
track of what locations in memory it is addressing: The 
Address Register (AR) is used for thisAddress Register (AR) is used for this

– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect 
addressing, it is placed in the Data Register (DR). The addressing, it is placed in the Data Register (DR). The 
processor then uses this value as data for its operation

• The Basic Computer has a single general purpose register –
the Accumulator (AC)

Computer Organization Computer Architecture

the Accumulator (AC)
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PROCESSOR REGISTERS
Instruction codesBasic Computer Organization & Design

• The significance of a general purpose register is that it can be 
referred to in instructions

– e.g. load AC with the contents of a specific memory location; store the – e.g. load AC with the contents of a specific memory location; store the 
contents of AC into a specified memory location

• Often a processor will need a scratch register to store 
intermediate results or other temporary data; in the Basic 
Computer this is the Temporary Register (TR)

• The Basic Computer uses a very simple model of input/output 
(I/O) operations(I/O) operations

– Input devices are considered to send 8 bits of character data to the processor
– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an • The Input Register (INPR) holds an 8 bit character gotten from an 
input device

• The Output Register (OUTR) holds an 8 bit character to be send 
to an output device

Computer Organization Computer Architecture

to an output device
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BASIC COMPUTER  REGISTERS
Registers

Registers in the Basic Computer

Basic Computer Organization & Design

Registers in the Basic Computer

11 0

PC
11 0

Memory

15 0
IR

11 0

AR 4096 x 16

CPU
15 0

TR
7 0

OUTR

15 0

DR

15 0

ACINPR
0 7

List of BC Registers
DR           16        Data Register Holds memory operand

OUTR ACINPR

AR           12        Address Register         Holds address for memory
AC           16        Accumulator Processor register
IR 16        Instruction Register     Holds instruction code
PC           12        Program Counter Holds address of instruction
TR           16        Temporary Register     Holds temporary data

Computer Organization Computer Architecture

TR           16        Temporary Register     Holds temporary data
INPR         8         Input Register              Holds input character
OUTR       8 Output Register           Holds output character
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COMMON  BUS  SYSTEM
RegistersBasic Computer Organization & Design

• The registers in the Basic Computer are connected using a • The registers in the Basic Computer are connected using a 
bus

• This gives a savings in circuitry over complete 
connections between registersconnections between registers

Computer Organization Computer Architecture
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COMMON  BUS  SYSTEM
Registers

S2
S1 Bus

Basic Computer Organization & Design

S1
S0

Bus

Memory unit
4096 x 16

Address

ReadWrite

7

LD  INR  CLR

AR

LD  INR  CLR

PC

1

2

LD  INR  CLR

LD   INR   CLR

DR

AC
E

3

LD   INR   CLR

ACALU

INPR

IR

4

5IR
LD

LD   INR   CLR

TR

5

6

Computer Organization Computer Architecture

OUTR
LD

Clock

16-bit common bus
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COMMON  BUS  SYSTEM
RegistersBasic Computer Organization & Design

INPR
Memory

4096 x 16

Read

Write

AC

ALUE
4096 x 16

Address

DR

L I C

AC

L I C

IR

L

AR

PC

DRL I C IR

TR

L I C

OUTR LDAR

L I C

OUTR LD

16-bit Common Bus
7 1 2 3 4 5 6

Computer Organization Computer Architecture

16-bit Common Bus
S0 S1 S2
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COMMON  BUS  SYSTEM
RegistersBasic Computer Organization & Design

• Three control lines, S2, S1, and S0 control which register the 
bus selects as its input

S2 S1 S0 Register
0   0   0 x
0   0   1 AR
0   1   0 PC
0   1   1 DR
1   0   0 AC

S2 S1 S0 Register

1   0   0 AC
1   0   1 IR
1   1   0 TR
1   1   1 Memory

• Either one of the registers will have its load signal 
activated, or the memory will have its read signal activated

– Will determine where the data from the bus gets loaded
• The 12-bit registers, AR and PC, have 0’s loaded onto the • The 12-bit registers, AR and PC, have 0’s loaded onto the 

bus in the high order 4 bit positions
• When the 8-bit register OUTR is loaded from the bus, the 

data comes from the low order 8 bits on the bus

Computer Organization Computer Architecture

data comes from the low order 8 bits on the bus
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BASIC COMPUTER  INSTRUCTIONS
InstructionsBasic Computer Organization & Design

• Basic Computer Instruction Format

15     14 12 11 0
I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)
15 12 11 0

Register operation0    1    1    1

Input-Output Instructions (OP-code =111, I = 1)

Register operation0    1    1    1

15 12 11 015 12 11 0
I/O operation1    1    1    1

Computer Organization Computer Architecture
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BASIC  COMPUTER  INSTRUCTIONS
Hex Code

InstructionsBasic Computer Organization & Design

Hex Code
Symbol    I = 0       I = 1                  Description
AND        0xxx     8xxx       AND memory word to AC
ADD        1xxx     9xxx       Add memory word to AC
LDA         2xxx     Axxx      Load AC from memory
STA         3xxx     Bxxx      Store content of AC into memorySTA         3xxx     Bxxx      Store content of AC into memory
BUN        4xxx     Cxxx       Branch unconditionally
BSA        5xxx      Dxxx      Branch and save return address
ISZ          6xxx      Exxx      Increment and skip if zero

CLA 7800 Clear ACCLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200              Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and ECIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computerHLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI                F200 Skip on input flag
SKO F100 Skip on output flag

Computer Organization Computer Architecture

SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off
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INSTRUCTION  SET  COMPLETENESS
A computer should have a set of instructions so that the user can 

InstructionsBasic Computer Organization & Design

A computer should have a set of instructions so that the user can 
construct machine language programs to evaluate any function 
that is known to be computable.

• Instruction Types
Functional Instructions

- Arithmetic, logic, and shift instructions- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions
- Data transfers between the main memory 

and the processor registersand the processor registers
- LDA, STA

Control Instructions
- Program sequencing and control- Program sequencing and control
- BUN, BSA, ISZ

Input/Output Instructions
- Input and output

Computer Organization Computer Architecture

- INP, OUT
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CONTROL UNIT
Instruction codesBasic Computer Organization & Design

• Control unit (CU) of a processor translates from machine 
instructions to the control signals for the microoperations 
that implement themthat implement them

• Control units are implemented in one of two ways
• Hardwired Control• Hardwired Control

– CU is made up of sequential and combinational circuits to generate the 
control signals

• Microprogrammed Control• Microprogrammed Control
– A control memory on the processor contains microprograms that 

activate the necessary control signals

• We will consider a hardwired implementation of the control • We will consider a hardwired implementation of the control 
unit for the Basic Computer

Computer Organization Computer Architecture
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TIMING  AND  CONTROL
Timing and controlBasic Computer Organization & Design

Control unit of Basic Computer

Instruction register (IR)
15 14    13    12 11 - 0

3 x 8
decoder

Other inputs

decoder
7  6 5 4 3  2 1 0

I
D 0

Control
signals

D 7
Combinational

Control
logic

15   14  . . . .  2  1  0

T

T

15

0

15   14  . . . .  2  1  0
4 x 16

decoder

4-bit
sequence

counter

Increment (INR)
Clear (CLR)

Computer Organization Computer Architecture

sequence
counter

(SC)

Clear (CLR)

Clock
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TIMING  SIGNALS
- Generated by 4-bit sequence counter and 416 decoder

Timing and controlBasic Computer Organization & Design

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example:   T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

Clock
T0 T1 T2 T3 T4 T0

Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.
D3T4: SC 
0

T0

T1

T2

T3

T4

D3

Computer Organization Computer Architecture

CLR 
SC
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INSTRUCTION  CYCLE
Basic Computer Organization & Design

• In Basic Computer, a machine instruction is executed in the 
following cycle:
1. Fetch an instruction from memory1. Fetch an instruction from memory
2. Decode the instruction
3. Read the effective address from memory if the instruction has an 

indirect address
4. Execute the instruction

• After an instruction is executed, the cycle starts again at 
step 1, for the next instructionstep 1, for the next instruction

• Note: Every different processor has its own (different) 
instruction cycle instruction cycle 

Computer Organization Computer Architecture
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FETCH and DECODE
Instruction CycleBasic Computer Organization & Design

• Fetch and Decode T0: AR PC  (S0S1S2=010, T0=1)
T1: IR  M [AR],  PC  PC + 1   (S0S1S2=111, T1=1)
T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

T1 S2

S1

S0

Bus

Memory

T1

T0

7Memory
unit

Address
Read

AR

LD

PC

1

2

INR

IR

LD

5

Computer Organization Computer Architecture

LD Clock
Common bus
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DETERMINE  THE  TYPE  OF  INSTRUCTION
Instrction Cycle

Start
SC  

Basic Computer Organization & Design

Start
SC  

AR  PC
T0

IR  M[AR], PC  PC + 1
T1

IR  M[AR], PC  PC + 1

AR  IR(0-11), I  IR(15)
Decode Opcode in IR(12-14),

T2

= 0 (direct)

D7
= 0 (Memory-reference)(Register or I/O) = 1

II
= 0 (register)(I/O) = 1 (indirect) = 1

Execute
register-reference

instruction
SC  0

Execute
input-output
instruction

SC  0

M[AR]AR Nothing
T3 T3 T3 T3

Execute
memory-reference

instruction

T4

D'7IT3: AR M[AR]
D'7I'T3: Nothing

instruction
SC  0

Computer Organization Computer Architecture

D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.
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REGISTER  REFERENCE  INSTRUCTIONS
Instruction Cycle

Register Reference Instructions are identified when

Basic Computer Organization & Design

- D7 = 1,  I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

Register Reference Instructions are identified when

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

- Execution starts with timing signal T3

r: SC  0
CLA rB11: AC  0
CLE rB10: E  0
CMA rB9: AC  AC’CMA rB9: AC  AC’
CME rB8: E  E’
CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)
CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)
INC rB5: AC  AC + 1INC rB5: AC  AC + 1
SPA rB4: if (AC(15) = 0) then (PC  PC+1)
SNA rB3: if (AC(15) = 1) then (PC  PC+1)
SZA rB2: if (AC = 0) then (PC  PC+1)
SZE rB1: if (E = 0) then (PC  PC+1)

Computer Organization Computer Architecture

SZE rB1: if (E = 0) then (PC  PC+1)
HLT rB0: S  0  (S is a start-stop flip-flop)
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MEMORY  REFERENCE  INSTRUCTIONS
MR InstructionsBasic Computer Organization & Design

Symbol
Operation
Decoder Symbolic Description

AND D0 AC  AC  M[AR]
ADD D1 AC  AC + M[AR], E  Cout
LDA D AC  M[AR]LDA D2 AC  M[AR]
STA D3 M[AR]  AC
BUN  D4 PC  AR
BSA D5 M[AR]  PC, PC  AR + 1
ISZ D M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

- The effective address of the instruction is in AR and was placed there during 
timing signal T2 when I = 0, or during timing signal T3 when I = 1

ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

AND to AC


timing signal T2 when I = 0, or during timing signal T3 when I = 1
- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

D0T4: DR  M[AR] Read operand
D0T5: AC  AC  DR, SC  0 AND with AC

ADD to AC
D1T4: DR  M[AR] Read operand

Computer Organization Computer Architecture

D1T4: DR  M[AR] Read operand
D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry in E
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MEMORY  REFERENCE  INSTRUCTIONS
LDA: Load to AC

Basic Computer Organization & Design

LDA: Load to AC
D2T4: DR  M[AR]
D2T5: AC  DR, SC  0

STA: Store AC
D T : M[AR]  AC, SC  0D3T4: M[AR]  AC, SC  0

BUN: Branch Unconditionally
D4T4: PC  AR, SC  0

BSA: Branch and Save Return Address

Memory, PC after execution

0 BSA 135

Next instruction

20

PC = 21

Memory, PC, AR at time T4

0 BSA 135

Next instruction

20

21

BSA: Branch and Save Return Address
M[AR]  PC, PC  AR + 1

21

Next instructionPC = 21

AR = 135

Next instruction21

135 21

Subroutine

AR = 135

136 Subroutine

135

PC = 136

Computer Organization Computer Architecture

1 BUN 135 1 BUN 135

Memory Memory
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MEMORY  REFERENCE  INSTRUCTIONS
MR InstructionsBasic Computer Organization & Design

BSA: 
D T : M[AR]  PC,  AR  AR + 1D5T4: M[AR]  PC,  AR  AR + 1
D5T5: PC  AR, SC  0

ISZ: Increment and Skip-if-ZeroISZ: Increment and Skip-if-Zero
D6T4: DR  M[AR]
D6T5: DR  DR + 1
D6T4: M[AR]  DR,  if (DR = 0) then (PC  PC + 1),  SC  0

Computer Organization Computer Architecture
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FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS
MR Instructions

Memory-reference instruction

Basic Computer Organization & Design

Memory-reference instruction

AND ADD LDA STA

D  T0 4 D  T1 4 D  T2 4 D  T3 4

DR  M[AR] DR  M[AR] DR  M[AR] M[AR]  AC
SC  0

AC  AC    DR
SC  0

AC  AC + DR


AC  DR
SC  0

0 4 1 4 2 4 3 4

D  T0 5 D  T1 5 D  T2 5


SC  0 E  Cout
SC  0

SC  0

BUN BSA ISZ

D  T4 4 D  T5 4 D  T6 4
PC  AR
SC  0

M[AR]  PC
AR  AR + 1

DR  M[AR]

D  T4 4 D  T5 4 D  T6 4

D  T5 5 D  T6 5
DR  DR + 1

5 5 6 5

PC  AR
SC  0

M[AR]  DR
If (DR = 0)

D  T6 6

Computer Organization Computer Architecture

If (DR = 0)
then (PC  PC + 1)
SC  0
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INPUT-OUTPUT  AND  INTERRUPT
I/O and InterruptBasic Computer Organization & Design

• Input-Output Configuration

A Terminal with a keyboard and a Printer

Input-output Serial
communication

Computer
registers andInput-output

terminal communication
interface

registers and
flip-flops

Printer
Receiver
interface FGOOUTR

AC

INPR Input register - 8 bits
OUTR Output register - 8 bits

Keyboard
Transmitter

interface

AC

INPR FGI

Serial Communications PathOUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information

Serial Communications Path
Parallel Communications Path

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR 
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal 

serially and with the AC in parallel.

Computer Organization Computer Architecture

serially and with the AC in parallel.
- The flags are needed to synchronize the timing 

difference between  I/O device and the computer
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PROGRAM  CONTROLLED  DATA  TRANSFER
-- CPU -- -- I/O Device --

I/O and InterruptBasic Computer Organization & Design

loop: If FGI = 1 goto loop
INPR  new data, FGI  1

-- CPU -- -- I/O Device --

/* Input */         /* Initially FGI = 0 */
loop:  If FGI = 0 goto loop

AC  INPR,  FGI  0

loop: If FGO = 1 goto loop
consume OUTR, FGO  1

/* Output */         /* Initially FGO = 1 */
loop:  If FGO = 0 goto loop

OUTR  AC,  FGO  0

FGI=0 FGO=1
Start Input

FGI  0

Start Output

AC  Data

FGI=0 FGO=1

FGI=0

AC  INPR

FGO=0

OUTR  AC

yes

no

yes

no

More
Character

FGO  0

More
Character

OUTR  AC

yes

yes
no

Computer Organization Computer Architecture

END
Character

END

no

no
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INPUT-OUTPUT  INSTRUCTIONS
Basic Computer Organization & Design

D7IT3 = pD7IT3 = p
IR(i) = Bi, i = 6, …, 11

p: SC  0 Clear SC
INP pB : AC(0-7)  INPR, FGI  0 Input char. to ACINP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flagSKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

Computer Organization Computer Architecture
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PROGRAM-CONTROLLED  INPUT/OUTPUT
I/O and InterruptBasic Computer Organization & Design

• Program-controlled I/O
- Continuous CPU involvement

I/O takes valuable CPU time
- CPU slowed down to I/O speed- CPU slowed down to I/O speed
- Simple
- Least hardware

Input

LOOP, SKI     DEV
BUN   LOOP
INP     DEV

Output
LOOP,       LDA    DATA
LOP,          SKO   DEV

BUN   LOP

Computer Organization Computer Architecture

BUN   LOP
OUT   DEV
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INTERRUPT  INITIATED  INPUT/OUTPUT
- Open communication only when some data has to be passed --> interrupt.

Basic Computer Organization & Design

- Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device. 

- When the interface founds that the I/O device is ready for data transfer, 
it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task - Upon detecting an interrupt, the CPU stops momentarily the task 
it is doing, branches to the service routine to process the data 
transfer, and then returns to the task it was performing.

* IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions- can be set and cleared by instructions
- when cleared, the computer cannot be interrupted

Computer Organization Computer Architecture
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FLOWCHART  FOR  INTERRUPT  CYCLE
R = Interrupt f/f

I/O and InterruptBasic Computer Organization & Design

R = Interrupt f/f

Store return address

R =1=0

in location 0
M[0]  PC

Interrupt cycleInstruction cycle

Fetch and decode
instructions M[0]  PC

Branch to location 1
PC  1

instructions

IEN

FGI

Execute
instructions =1

=1

=0

IEN  0
R  0

FGI

FGO

R  1

=1

=1
=0

=0

- The interrupt cycle is a HW implementation of a branch
and save return address operation.

R  1

and save return address operation.
- At the beginning of the next instruction cycle, the 

instruction that is read from memory is in address 1.
- At memory address 1, the programmer must store a branch instruction 

that sends the control to an interrupt service routine
- The instruction that returns the control to the original 

Computer Organization Computer Architecture

that sends the control to an interrupt service routine
- The instruction that returns the control to the original 

program is  "indirect BUN   0"
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REGISTER  TRANSFER  OPERATIONS  IN  INTERRUPT CYCLE
Memory

I/O and InterruptBasic Computer Organization & Design

After interrupt cycle

0 BUN 1120
0
1

Before interrupt

Main

0 BUN 1120
0

PC = 1

Memory

Main

256

PC = 256
255

Main
Program

1120
I/O

Program

256
255

Main
Program

1120
I/O

Program

Register Transfer Statements for Interrupt Cycle
- R  F/F  1     if IEN (FGI + FGO)T T T 

1 BUN 0 1 BUN 0

- R  F/F  1     if IEN (FGI + FGO)T0T1T2
 T0T1T2 (IEN)(FGI + FGO):   R  1

- The fetch and decode phases of the instruction cycle
must be modified Replace T , T , T with  R'T , R'T , R'Tmust be modified Replace T0, T1, T2 with  R'T0, R'T1, R'T2

- The interrupt cycle :
RT0: AR  0,  TR  PC
RT1: M[AR]  TR,  PC  0

Computer Organization Computer Architecture

RT1: M[AR]  TR,  PC  0
RT2: PC  PC + 1,  IEN  0,  R  0, SC  0
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FURTHER  QUESTIONS  ON  INTERRUPT
I/O and InterruptBasic Computer Organization & Design

How can the CPU recognize the device 
requesting an interrupt ?

Since different devices are likely to require 
different interrupt service routines, how can 
the CPU obtain the starting address of the 
appropriate routine in each case ?

Should any device be allowed to interrupt the 
CPU while another interrupt is being serviced ?

How can the situation be handled when two or 
more interrupt requests occur simultaneously ?

Computer Organization Computer Architecture
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COMPLETE  COMPUTER  DESCRIPTION
Flowchart  of  Operations

Description

start
SC  0, IEN  0, R  0

Basic Computer Organization & Design

SC  0, IEN  0, R  0

R

AR PC
R’T0

AR 0, TR PC
RT0

=0(Instruction              =1(Interrupt 
Cycle)                            Cycle)

AR  PC

IR  M[AR], PC  PC + 1
R’T1

AR  IR(0~11), I  IR(15)
D ...D  Decode IR(12 ~ 14)

R’T2

AR  0, TR  PC

M[AR]  TR, PC  0
RT1

PC  PC + 1, IEN  0
R  0, SC  0

RT2

D0...D7  Decode IR(12 ~ 14) R  0, SC  0

D7
=1(Register or I/O)              =0(Memory Ref)

=1 (I/O)       =0 (Register)                            =1(Indir)         =0(Dir)
I I

D IT D I’T D ’IT3 D ’I’T3
Execute

I/O
Instruction

Execute
RR

Instruction

AR <- M[AR] Idle
D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute  MR
Instruction

D7’T4

Computer Organization Computer Architecture

Execute  MR
Instruction
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COMPLETE  COMPUTER  DESCRIPTION        

Microoperations

DescriptionBasic Computer Organization & Design

Fetch

Decode

Indirect

RT0:      
RT1:
RT2:

D7IT3:

AR  PC
IR  M[AR], PC  PC + 1
D0, ..., D7  Decode IR(12 ~ 14), 

AR  IR(0 ~ 11), I  IR(15)
AR  M[AR]Indirect

Interrupt
D7IT3:

RT0:
RT1:
RT2:

AR  M[AR]

R  1
AR  0, TR  PC
M[AR]  TR, PC  0
PC  PC + 1, IEN  0, R  0, SC  0

T0T1T2(IEN)(FGI + FGO):

Memory-Reference
AND

ADD

RT2:

D0T4:
D0T5:
D1T4:
D1T5:

PC  PC + 1, IEN  0, R  0, SC  0

DR  M[AR]
AC  AC  DR, SC  0
DR  M[AR]
AC  AC + DR, E  Cout, SC  0

LDA

STA
BUN
BSA

D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D T :

AC  AC + DR, E  Cout, SC  0
DR  M[AR]
AC  DR, SC  0
M[AR]  AC, SC  0
PC  AR, SC  0
M[AR]  PC, AR  AR + 1
PC AR, SC 0

ISZ

5 4
D5T5:
D6T4:
D6T5:
D6T6:

PC  AR, SC  0
DR  M[AR]
DR  DR + 1
M[AR]  DR,  if(DR=0) then (PC  PC + 1), 
SC  0

Computer Organization Computer Architecture
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COMPLETE  COMPUTER  DESCRIPTION        

Microoperations

Basic Computer Organization & Design

Register-Reference

CLA

D7IT3 = r
IR(i) = Bi
r:
rB11:

(Common to all register-reference instr)
(i = 0,1,2, ..., 11)
SC  0
AC  0CLA

CLE
CMA
CME
CIR
CIL

rB11:
rB10:
rB9:
rB8:
rB7:
rB6:

AC  0
E  0
AC  AC
E  E
AC  shr AC, AC(15)  E, E  AC(0)
AC  shl AC, AC(0)  E, E  AC(15)CIL

INC
SPA
SNA
SZA
SZE

rB6:
rB5:
rB4:
rB3:
rB2:
rB1:

AC  shl AC, AC(0)  E, E  AC(15)
AC  AC + 1
If(AC(15) =0) then  (PC  PC + 1)
If(AC(15) =1) then  (PC  PC + 1)
If(AC = 0) then (PC  PC + 1)
If(E=0) then (PC  PC + 1)SZE

HLT

Input-Output

rB1:
rB0:

D7IT3 = p 
IR(i) = Bi
p:

If(E=0) then (PC  PC + 1)
S  0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC  0

INP
OUT
SKI
SKO
ION

p:
pB11:
pB10:
pB9:
pB8:
pB7:

SC  0
AC(0-7)  INPR, FGI  0
OUTR  AC(0-7), FGO  0
If(FGI=1) then (PC  PC + 1)
If(FGO=1) then (PC  PC + 1)
IEN  1

Computer Organization Computer Architecture

ION
IOF

pB7:
pB6:

IEN  1
IEN  0
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DESIGN  OF  BASIC  COMPUTER(BC)
Hardware Components of BC 

Design of Basic ComputerBasic Computer Organization & Design

Hardware Components of BC 
A memory unit:     4096 x 16.
Registers:  

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):  Flip-Flops(Status):  

I, S, E, R, IEN, FGI, and FGO
Decoders:         a 3x8 Opcode decoder

a 4x16 timing decoder
Common bus:   16 bitsCommon bus:   16 bits
Control logic gates:
Adder and Logic circuit:   Connected to AC

Control Logic Gates
- Input Controls of the nine registers
- Read and Write Controls of memory- Read and Write Controls of memory
- Set, Clear, or Complement Controls of the flip-flops
- S2, S1, S0 Controls to select a register for the bus

Computer Organization Computer Architecture

- AC, and Adder and Logic circuit
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CONTROL  OF  REGISTERS  AND  MEMORY
Address Register; AR

Design of Basic ComputerBasic Computer Organization & Design

Scan all of the register transfer statements that change the content of AR:
Address Register; AR

R’T0:      AR  PC            LD(AR)
R’T2:      AR  IR(0-11)    LD(AR)


R’T2:      AR  IR(0-11)    LD(AR)
D’7IT3:   AR  M[AR]       LD(AR)
RT0:       AR  0               CLR(AR)
D5T4:     AR  AR + 1      INR(AR)

LD(AR) = R'T0 + R'T2 + D'7IT3
CLR(AR) = RT0
INR(AR) = D5T4

AR

LD Clock

To bus
12

From bus
12

D'
I

T

7

3 INR
CLR

T
T

R
T
D

3
2

0

Computer Organization Computer Architecture

D
T4
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CONTROL  OF  FLAGS
IEN: Interrupt Enable Flag

Design of Basic ComputerBasic Computer Organization & Design

pB7:    IEN  1  (I/O Instruction)
pB6:    IEN  0  (I/O Instruction)
RT2:    IEN  0  (Interrupt)

IEN: Interrupt Enable Flag

RT2:    IEN  0  (Interrupt)

p = D7IT3  (Input/Output Instruction)

D

I

T3

7

J Q IEN
p

B7T3

K

7

B6

R
T2

R

Computer Organization Computer Architecture
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CONTROL  OF  COMMON  BUS
Design of Basic ComputerBasic Computer Organization & Design

x1
x2
x3
x4
x5

Encoder

S 2

S 1

Multiplexer

bus select

inputsx5
x6
x7

S 0
inputs

x1 x2  x3 x4 x5 x6 x7 S2  S1  S0
selected
registerx1 x2  x3 x4 x5 x6 x7 S2  S1  S0 register

0    0    0    0    0    0    0       0     0     0           none
1    0    0    0    0    0    0       0     0     1           AR
0    1    0    0    0    0    0       0     1     0           PC
0    0    1    0    0    0    0       0     1     1           DR
0    0    0    1    0    0    0       1     0     0           AC
0    0    0    0    1    0    0       1     0     1           IR0    0    0    0    1    0    0       1     0     1           IR
0    0    0    0    0    1    0       1     1     0           TR
0    0    0    0    0    0    1       1     1     1           Memory

For AR D4T4:  PC  AR
D5T5:  PC  AR

Computer Organization Computer Architecture

x1 = D4T4 + D5T5
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DESIGN  OF  ACCUMULATOR  LOGIC
Circuits associated with AC

Design of AC LogicBasic Computer Organization & Design

Circuits associated with AC 16

16

8

Adder and
logic 
circuit

16
ACFrom DR

From INPR

16

To bus8From INPR

Control

LD INR CLR Clock

All the statements that change the content of AC

Control
gates

All the statements that change the content of AC

D0T5: AC  AC  DR AND with DR
D1T5: AC  AC + DR Add with DR
D2T5: AC  DR Transfer from DRD2T5: AC  DR Transfer from DR
pB11: AC(0-7)  INPR Transfer from INPR
rB9: AC  AC Complement
rB7 : AC  shr AC, AC(15)  E Shift right
rB6 : AC  shl AC, AC(0)  E Shift left
rB : AC  0 Clear

Computer Organization Computer Architecture

6
rB11 : AC  0 Clear
rB5 : AC  AC + 1 Increment
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CONTROL  OF  AC  REGISTER
Design of AC LogicBasic Computer Organization & Design

Gate structures for controlling 
the LD, INR, and CLR of AC

AC

LD Clock

To bus16From Adder
and Logic

16

ANDD0
T

LD
INR

CLRADD

DR

0

D1

D2

T 5

T 5
INPR

COM

SHR

B11

B9
r

p
T 5

SHR

SHL

INC

B7

B6

B

Computer Organization Computer Architecture

CLR
B5

B11
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ALU (ADDER  AND  LOGIC  CIRCUIT)
Design of AC LogicBasic Computer Organization & Design

One stage of Adder and Logic circuit

AND

DR(i) AC(i)

ADD

DR

J

K

Q
AC(i)

LD

FA

C

C

i

i

i+1

I

INPR

COM

K
From
INPR
bit(i)

SHR

SHL
AC(i+1)

AC(i-1)

Computer Organization Computer Architecture
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PROGRAMMING  THE  BASIC  COMPUTER
Programming the Basic Computer

Introduction

Machine Language

Assembly Language

Assembler

Program LoopsProgram Loops

Programming Arithmetic and Logic Operations

SubroutinesSubroutines

Input-Output Programming

Computer Organization Computer Architecture
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INTRODUCTION
Those concerned with computer architecture should 

Introduction Programming the Basic Computer

Those concerned with computer architecture should 
have a knowledge of both hardware and software 
because the two branches influence each other.

Symbol Hexa code Description
m: effective address
M: memory word (operand) 

found at m

AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M

Instruction Set of the Basic Computer

found at mLDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m+1
ISZ 6 or E Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear ECLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC, carry to E
SPA 7010 Skip if AC is positiveSPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on

Computer Organization Computer Architecture

OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off
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MACHINE  LANGUAGE
• Program 

Machine Language Programming the Basic Computer

• Program 
A list of instructions or statements for directing 
the computer to perform a required data 
processing taskprocessing task

• Various types of programming languages
- Hierarchy of programming languages- Hierarchy of programming languages

• Machine-language
- Binary code- Binary code
- Octal or hexadecimal code

• Assembly-language                     (Assembler)• Assembly-language                     (Assembler)
- Symbolic code

• High-level language                     (Compiler)

Computer Organization Computer Architecture

• High-level language                     (Compiler)
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COMPARISON  OF  PROGRAMMING LANGUAGES
• Binary Program to Add Two Numbers • Hexa program 

Machine Language Programming the Basic Computer

0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110

• Binary Program to Add Two Numbers
Location             Instruction Code 000 2004

001 1005
002 3006
003 7001

• Hexa program 
Location      Instruction 

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

003 7001
004 0053
005 FFE9
006 0000 

• Program with Symbolic OP-Code

000         LDA 004 Load 1st operand into AC
001         ADD 005 Add 2nd operand to AC

Location             Instruction                      Comments

• Assembly-Language Program
ORG 0 /Origin of program is location 0
LDA A /Load  operand from location A
ADD B /Add  operand from location B001         ADD 005 Add 2nd operand to AC

002         STA 006 Store sum in location 006
003         HLT Halt computer
004         0053 1st operand
005         FFE9 2nd operand (negative)
006         0000 Store sum here

ADD B /Add  operand from location B
STA C /Store sum in location C
HLT /Halt computer

A, DEC 83 /Decimal operand
B, DEC -23 /Decimal operand
C, DEC 0 /Sum stored in location C

END /End of symbolic program

• Fortran Program

INTEGER  A, B, C
DATA  A,83 / B,-23

END /End of symbolic program

Computer Organization Computer Architecture

DATA  A,83 / B,-23
C = A + B
END
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ASSEMBLY  LANGUAGE
Syntax of the BC assembly language

Assembly Language  Programming the Basic Computer

Syntax of the BC assembly language
Each line is arranged in three columns called fields
Label field  

- May be empty or may specify a symbolic 
address consists of up to 3 characters

- Terminated by a comma
Instruction field

- Specifies a machine or a pseudo instruction- Specifies a machine or a pseudo instruction
- May specify one of

* Memory reference instr. (MRI)
MRI  consists of two or three symbols separated by spaces.

ADD  OPR      (direct address MRI)
ADD  PTR  I    (indirect address MRI)

* Register reference or input-output instr. * Register reference or input-output instr. 
Non-MRI does not have an address part

* Pseudo instr. with or without an operand
Symbolic address used in the instruction field must be 

defined somewhere as a label
Comment field

- May be empty or may include a comment- May be empty or may include a comment

Computer Organization Computer Architecture
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PSEUDO-INSTRUCTIONS
Assembly Language  Programming the Basic Computer

ORG  N
Hexadecimal number N is the memory loc. 

for the instruction or operand listed in the following line
END

Denotes the end of symbolic program
DEC  N  

Signed decimal number N to be converted to the binarySigned decimal number N to be converted to the binary
HEX  N 

Hexadecimal number N to be converted to the binary

Example: Assembly language program to subtract two numbers

ORG  100
LDA  SUB
CMA
INC

/ Origin of program is location 100
/ Load subtrahend to AC
/ Complement AC
/ Increment ACINC

ADD  MIN
STA  DIF
HLT
DEC  83
DEC  -23

/ Increment AC
/ Add minuend to AC
/ Store difference
/ Halt computer
/ Minuend
/ Subtrahend

MIN,
SUB,

Computer Organization Computer Architecture

DEC  -23
HEX  0
END

/ Subtrahend
/ Difference stored here
/ End of symbolic program

SUB,
DIF,
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TRANSLATION  TO  BINARY
Assembly Language  Programming the Basic Computer

Hexadecimal Code

ORG  100
LDA  SUB
CMA

100         2107
101         7200

Symbolic ProgramLocation   Content
Hexadecimal Code

CMA
INC
ADD  MIN
STA  DIF
HLT

101         7200
102         7020
103         1106
104         3108
105         7001 HLT

DEC  83
DEC  -23
HEX  0
END

MIN,
SUB,
DIF,

105         7001
106         0053
107         FFE9
108         0000

Computer Organization Computer Architecture
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ASSEMBLER       - FIRST  PASS -
Assembler

Assembler Programming the Basic Computer

Assembler
Source Program - Symbolic Assembly Language Program

Object Program - Binary Machine Language Program
Two pass assembler

1st pass:  generates a table that correlates all user defined
(address) symbols with their binary equivalent value(address) symbols with their binary equivalent value

2nd pass:  binary translation 

First pass
First passFirst pass

LC := 0

Scan next line of code Set LC

Label no

yes

yes
noORG

Store symbol
in address-
symbol table
together with
value of LC

END

Go to
second
pass

no

yes

Computer Organization Computer Architecture

Increment LC

pass
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ASSEMBLER     - SECOND  PASS -
Assembler 

Second Pass

Programming the Basic Computer

Machine instructions are translated  by means of table-lookup procedures;
(1. Pseudo-Instruction Table, 2. MRI Table, 3. Non-MRI Table

4. Address Symbol Table) 

Second passSecond pass

LC <- 0

Scan next line of code
Set LC

yes
no

Done

yes

yes

ORGPseudo
instr.

yes ENDno

MRI

no

no
Convert
operand

no
DEC or 
HEX

Get operation code
Valid

non-MRI
instr.

operand
to binary
and store
in location
given by LC

Error inStore binary

yes

no
Get operation code
and set bits 2-4

Search address-
symbol table for
binary equivalent
of symbol address
and set bits 5-16 Error in

line of
code

Store binary
equivalent of
instruction
in location
given by LC

and set bits 5-16

I

Set
first

bit to 0

Set
first

bit to 1

yes no

Computer Organization Computer Architecture

Assemble all parts of
binary instruction and
store in location given by LC

Increment LC
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PROGRAM  LOOPS
Program Loops 

Loop: A sequence of instructions that are executed many times,

Programming the Basic Computer

DIMENSION  A(100)
INTEGER  SUM,  A
SUM = 0
DO  3  J = 1,  100

Loop: A sequence of instructions that are executed many times,
each with a different set of data

Fortran program to add 100 numbers:

DO  3  J = 1,  100
SUM = SUM + A(J)3

ORG  100 / Origin of program is HEX 100

Assembly-language program to add 100 numbers:

ORG  100
LDA  ADS
STA  PTR
LDA  NBR
STA  CTR
CLA
ADD  PTR  I
ISZ  PTR

/ Origin of program is HEX 100
/ Load first address of operand
/ Store in pointer
/ Load -100
/ Store in counter
/ Clear AC
/ Add an operand to AC
/ Increment pointer

LOP, ADD  PTR  I
ISZ  PTR
ISZ  CTR
BUN  LOP
STA  SUM
HLT
HEX  150
HEX  0

/ Add an operand to AC
/ Increment pointer
/ Increment counter
/ Repeat loop again
/ Store sum
/ Halt
/ First address of operands
/ Reserved for a pointer

LOP,

ADS,
PTR, HEX  0

DEC  -100
HEX  0
HEX  0
ORG  150
DEC  75

/ Reserved for a pointer
/ Initial value for a counter
/ Reserved for a counter
/ Sum is stored here
/ Origin of operands is HEX 150
/ First operand

PTR,
NBR,
CTR,
SUM,

..

Computer Organization Computer Architecture

DEC  23
END

/ Last operand
/ End of symbolic program

...
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PROGRAMMING  ARITHMETIC  AND  LOGIC OPERATIONS
Programming Arithmetic and Logic OperationsProgramming the Basic Computer

- Software Implementation

Implementation of Arithmetic and Logic Operations

- Software Implementation
- Implementation of an operation with  a program

using machine instruction set
- Usually when the operation is not included

in the instruction set

- Hardware Implementation 
- Implementation of an operation in a computer - Implementation of an operation in a computer 

with one machine instruction

Software Implementation example:

*  Multiplication
- For simplicity, unsigned positive numbers- For simplicity, unsigned positive numbers
- 8-bit numbers -> 16-bit product

Computer Organization Computer Architecture
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FLOWCHART  OF  A  PROGRAM  - Multiplication -
Programming Arithmetic and Logic Operations

CTR  - 8

Programming the Basic Computer

X holds the multiplicand
Y holds the multiplier
P holds the product

Example with four significant digits

CTR  - 8
P  0

E  0

AC  Y Example with four significant digits

0000 1111              
0000 1011       0000 0000
0000 1111       0000 1111
0001 1110       0010 1101

AC  Y

Y  AC

cir EAC X =
Y =

P

0001 1110       0010 1101
0000 0000       0010 1101
0111 1000       1010 0101
1010 0101E

P  P + X

E  0

=1=0

cil

E  0

AC  X

cil EACcilcil EAC

X  AC

CTR  CTR + 1

Computer Organization Computer Architecture

CTR =0 Stop 0
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ASSEMBLY  LANGUAGE  PROGRAM   - Multiplication -
Programming Arithmetic and  Logic OperationsProgramming the Basic Computer

ORG  100
CLE
LDA  Y
CIR

/ Clear E
/ Load multiplier
/ Transfer multiplier bit to E

LOP,

CIR
STA  Y
SZE
BUN  ONE
BUN  ZRO

/ Transfer multiplier bit to E
/ Store shifted multiplier
/ Check if bit is zero
/ Bit is one; goto ONE
/ Bit is zero; goto ZROBUN  ZRO

LDA  X
ADD  P
STA  P
CLE
LDA  X

/ Bit is zero; goto ZRO
/ Load multiplicand
/ Add to partial product
/ Store partial product
/ Clear E
/ Load multiplicand

ONE,

ZRO, LDA  X
CIL
STA  X
ISZ  CTR
BUN  LOP
HLT

/ Load multiplicand
/ Shift left
/ Store shifted multiplicand
/ Increment counter
/ Counter not zero; repeat loop
/ Counter is zero; halt

ZRO,

HLT
DEC  -8
HEX  000F
HEX  000B
HEX  0

/ Counter is zero; halt
/ This location serves as a counter
/ Multiplicand stored here
/ Multiplier stored here
/ Product formed here

CTR,
X,
Y,
P,

Computer Organization Computer Architecture

HEX  0
END

/ Product formed hereP,
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ASSEMBLY  LANGUAGE  PROGRAM  

- Double Precision  Addition -

Programming Arithmetic and Logic OperationsProgramming the Basic Computer

LDA    AL / Load A lowLDA    AL
ADD    BL
STA    CL
CLA
CIL
ADD    AH
ADD    BH

/ Load A low
/ Add B low, carry in E
/ Store in C low
/ Clear AC
/ Circulate to bring carry into AC(16)
/ Add A high and carry
/ Add B highADD    BH

STA    CH
HLT

/ Add B high
/ Store in C high

Computer Organization Computer Architecture
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ASSEMBLY  LANGUAGE  PROGRAM  

- Logic  and  Shift Operations -
• Logic operations

Programming Arithmetic and Logic OperationsProgramming the Basic Computer

• Logic operations

- BC instructions :  AND, CMA, CLA
- Program for OR operation 

LDA    A / Load 1st operandLDA    A
CMA
STA    TMP
LDA    B
CMA
AND    TMP
CMA

/ Load 1st operand
/ Complement to get A’
/ Store in a temporary location
/ Load 2nd operand B
/ Complement to get B’
/ AND with A’ to get A’ AND B’
/ Complement again to get A OR B

• Shift operations  - BC has Circular Shift only

- Logical shift-right operation - Logical shift-left operation- Logical shift-right operation - Logical shift-left operation
CLE CLE
CIR CIL

- Arithmetic right-shift operation

CLE
SPA
CME
CIR

/ Clear E to 0
/ Skip if AC is positive
/ AC is negative
/ Circulate E and AC

Computer Organization Computer Architecture

CIR / Circulate E and AC
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SUBROUTINES
Subroutines

Subroutine

Programming the Basic Computer

- A set of common instructions that can be used in a program many times.
- Subroutine linkage : a procedure for branching 

to a subroutine and returning to the main program

Subroutine

ORG  100
LDA  X

/ Main program
/ Load X100

Loc.

Example

LDA  X
BSA  SH4
STA  X
LDA  Y
BSA  SH4
STA  Y
HLT

/ Load X
/ Branch to subroutine
/ Store shifted number
/ Load Y
/ Branch to subroutine again
/ Store shifted number

100
101
102
103
104
105
106 HLT

HEX  1234
HEX  4321

HEX  0
CIL

/ Subroutine to shift left 4 times
/ Store return address here
/ Circulate left once

X,
Y,

SH4,

106
107
108

109
10A CIL

CIL
CIL
CIL
AND  MSK
BUN  SH4  I

/ Circulate left once

/ Circulate left fourth time
/ Set AC(13-16) to zero
/ Return to main program

10A
10B
10C
10D
10E
10F

Computer Organization Computer Architecture

BUN  SH4  I
HEX  FFF0
END

/ Return to main program
/ Mask operandMSK,

10F
110
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SUBROUTINE  PARAMETERS  AND  DATA  LINKAGE
Subroutines

Linkage of Parameters and Data between the Main Program and a Subroutine

Programming the Basic Computer

Linkage of Parameters and Data between the Main Program and a Subroutine
- via Registers
- via Memory locations
- ….

ORG  200
LDA  X / Load 1st operand into AC200

Loc.
Example: Subroutine performing LOGICAL OR operation; Need two parameters 

LDA  X
BSA  OR
HEX  3AF6
STA  Y
HLT
HEX  7B95

/ Load 1st operand into AC
/ Branch to subroutine OR
/ 2nd operand stored here
/ Subroutine returns here

/ 1st operand stored hereX,

200
201
202
203
204
205 HEX  7B95

HEX  0
HEX  0
CMA
STA  TMP
LDA  OR  I

/ 1st operand stored here
/ Result stored here
/ Subroutine OR
/ Complement 1st operand
/ Store in temporary location
/ Load 2nd operand

X,
Y,
OR,

205
206
207
208
209
20A LDA  OR  I

CMA
AND  TMP
CMA
ISZ  OR

/ Load 2nd operand
/ Complement 2nd operand
/ AND complemented 1st operand
/ Complement again to get OR
/ Increment return address
/ Return to main program

20A
20B
20C
20D
20E

Computer Organization Computer Architecture

ISZ  OR
BUN  OR  I
HEX  0
END

/ Return to main program
/ Temporary storageTMP,

20E
20F
210
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SUBROUTINE  - Moving a Block of Data -
SubroutinesProgramming the Basic Computer

BSA  MVE
HEX  100
HEX  200
DEC  -16

/ Main program
/ Branch to subroutine
/ 1st address of source data
/ 1st address of destination data
/ Number of items to moveDEC  -16

HLT
HEX  0
LDA  MVE  I
STA  PT1
ISZ  MVE

/ Number of items to move

/ Subroutine MVE
/ Bring address of source
/ Store in 1st pointer
/ Increment return address

MVE,

ISZ  MVE
LDA  MVE  I
STA  PT2
ISZ  MVE
LDA  MVE  I
STA  CTR

/ Increment return address
/ Bring address of destination
/ Store in 2nd pointer
/ Increment return address
/ Bring number of items
/ Store in counterSTA  CTR

ISZ  MVE
LDA  PT1  I
STA  PT2  I
ISZ  PT1

/ Store in counter
/ Increment return address
/ Load source item
/ Store in destination
/ Increment source pointer

LOP,
• Fortran subroutine

ISZ  PT1
ISZ  PT2
ISZ  CTR
BUN  LOP
BUN  MVE  I
--

/ Increment source pointer
/ Increment destination pointer
/ Increment counter
/ Repeat 16 times
/ Return to main program

PT1,

SUBROUTINE  MVE (SOURCE, DEST, N)
DIMENSION  SOURCE(N), DEST(N)
DO  20  I = 1, N
DEST(I) = SOURCE(I)
RETURN

20

Computer Organization Computer Architecture

--
--
--

PT1,
PT2,
CTR,

RETURN
END
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INPUT  OUTPUT  PROGRAM
Input Output ProgramProgramming the Basic Computer

Program to Input one Character(Byte)

SKI
BUN  CIF
INP

/ Check input flag
/ Flag=0, branch to check again
/ Flag=1, input character

CIF,

INP
OUT
STA  CHR
HLT
--

/ Flag=1, input character
/ Display to ensure correctness
/ Store character

/ Store character hereCHR,

LDA  CHR
SKO
BUN  COF
OUT
HLT

/ Load character into AC
/ Check output flag
/ Flag=0, branch to check again
/ Flag=1, output character

COF,

Program to Output a Character

HLT
HEX  0057 / Character is "W"CHR,

Computer Organization Computer Architecture
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CHARACTER  MANIPULATION
Input Output ProgramProgramming the Basic Computer

Subroutine to Input 2 Characters and pack into a word 

--
SKI
BUN  FST
INP
OUT
BSA  SH4

/ Subroutine entry

/ Input 1st character

/ Logical Shift left 4 bits

IN2,
FST,

BSA  SH4
BSA  SH4
SKI
BUN  SCD
INP
OUT
BUN  IN2  I

/ Logical Shift left 4 bits
/ 4 more bits

/ Input 2nd character

/ Return

SCD,

Computer Organization Computer Architecture
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PROGRAM  INTERRUPT
Input Output ProgramProgramming the Basic Computer

Tasks of Interrupt Service Routine
- Save the Status of CPU

Contents of processor registers and Flags

- Identify the source of Interrupt- Identify the source of Interrupt
Check which flag is set

- Service the device whose flag is set
(Input Output Subroutine)

- Restore contents of processor registers and flags

- Turn the interrupt facility on

- Return to the running program
Load PC of the interrupted program

Computer Organization Computer Architecture
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INTERRUPT  SERVICE  ROUTINE
Loc.

Input Output ProgramProgramming the Basic Computer

-
BUN  SRV
CLA
ION
LDA  X
ADD  Y

/ Return address stored here
/ Branch to service routine
/ Portion of running program
/ Turn on interrupt facility

/ Interrupt occurs here

ZRO,0
1

100
101
102
103

Loc.

ADD  Y
STA  Z

STA  SAC
CIR
STA  SE

/ Interrupt occurs here
/ Program returns here after interrupt

/ Interrupt service routine
/ Store content of AC
/ Move E into AC(1)
/ Store content of E

SRV,

103
104

200

STA  SE
SKI
BUN  NXT
INP
OUT
STA  PT1  I
ISZ  PT1

/ Store content of E
/ Check input flag
/ Flag is off, check next flag
/ Flag is on, input character
/ Print character
/ Store it in input buffer
/ Increment input pointerISZ  PT1

SKO
BUN  EXT
LDA  PT2  I
OUT
ISZ  PT2
LDA  SE

/ Increment input pointer
/ Check output flag
/ Flag is off, exit
/ Load character from output buffer
/ Output character
/ Increment output pointer
/ Restore value of AC(1)

NXT,

EXT,
ISZ  PT2
LDA  SE
CIL
LDA  SAC
ION
BUN  ZRO  I
-
-

/ Increment output pointer
/ Restore value of AC(1)
/ Shift it to E
/ Restore content of AC
/ Turn interrupt on
/ Return to running program
/ AC is stored here
/ E is stored here

EXT,

SAC,
SE,

Computer Organization Computer Architecture

-
-
-
-

/ AC is stored here
/ E is stored here
/ Pointer of input buffer
/ Pointer of output buffer

SAC,
SE,
PT1,
PT2,
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MICROPROGRAMMED  CONTROL
Microprogrammed Control

• Control Memory

• Sequencing Microinstructions

• Microprogram Example

• Design of Control Unit• Design of Control Unit

• Microinstruction Format

• Nanostorage and Nanoprogram

Computer Organization Computer Architecture
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COMPARISON  OF  CONTROL  UNIT  IMPLEMENTATIONS
Implementation of Control Unit

Control Unit Implementation

Microprogrammed Control

Control Unit Implementation
Combinational Logic Circuits (Hard-wired)

Control Data

I R Status F/FsMemory

Control Unit's State

Combinational
Logic Circuits

Control
Points CPU

Timing State

Ins. Cycle State

Microprogram

Status F/Fs
Control DataM

e
mor I R Status F/Fs

Next Address
Generation

C
S
A

Control
Storage

(-program

ory
I R

C
S
D

C
P CPUD

Computer Organization Computer Architecture

Generation
Logic

S
A
R

(-program
memory)

S
D
R

P
s

CPUD
}
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TERMINOLOGY
Microprogram

Microprogrammed Control

Microprogram
- Program stored in memory that generates all the control signals required 

to execute the instruction set correctly
- Consists of microinstructions

Microinstruction
- Contains a control word and a sequencing word

Control Word - All the control information required for one clock cycle
Sequencing Word - Information needed to decideSequencing Word - Information needed to decide

the next microinstruction address
- Vocabulary to write a microprogram

Control Memory(Control Storage: CS)
- Storage in the microprogrammed control unit to store the microprogram- Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)
- CS whose contents can be modified

-> Allows the microprogram can be changed-> Allows the microprogram can be changed
-> Instruction set can be changed or modified  

Dynamic Microprogramming
- Computer system whose control unit is implemented with 

Computer Organization Computer Architecture

- Computer system whose control unit is implemented with 
a microprogram in WCS

- Microprogram can be changed by a systems programmer or a user  
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TERMINOLOGY
Microprogrammed Control

Sequencer (Microprogram Sequencer)

A Microprogram Control Unit that determines 
the Microinstruction Address to be executed 
in the next clock cycle

- In-line Sequencing
- Branch
- Conditional Branch 
- Subroutine- Subroutine
- Loop
- Instruction OP-code mapping

Computer Organization Computer Architecture
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MICROINSTRUCTION  SEQUENCING
Sequencing

Instruction code

Microprogrammed Control

Instruction code

Mapping
logic

MultiplexersBranchStatus MUX Multiplexers

Subroutine
register
(SBR)

Branch
logic

Status
bits

Control address register
(CAR)

MUX
select

Control memory (ROM)

Incrementer

Sequencing Capabilities Required in a Control Storage

Control memory (ROM)

Microoperations

select a status
bit

Branch address

Sequencing Capabilities Required in a Control Storage
- Incrementing of the control address register
- Unconditional and conditional branches
- A mapping process from the bits of the machine

Computer Organization Computer Architecture

- A mapping process from the bits of the machine
instruction to an address for control memory

- A facility for subroutine call and return
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CONDITIONAL  BRANCH
SequencingMicroprogrammed Control

Control address register
Load address

Increment

Control memoryMUX

Status bits
...

Status
(condition)

bits

Micro-operationsCondition select

Next address

Conditional Branch

If Condition is true, then Branch (address from
the next address field of the current microinstruction)the next address field of the current microinstruction)
else Fall Through

Conditions to Test: O(overflow), N(negative),
Z(zero), C(carry), etc.

Computer Organization Computer Architecture

Unconditional Branch
Fixing the value of one status bit at the input of the multiplexer to 1
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MAPPING  OF  INSTRUCTIONS
Sequencing

Direct Mapping

Microprogrammed Control

ADD Routine
AND Routine
LDA Routine
STA Routine

0000
0001
0010
0011

OP-codes of Instructions
ADD
AND

0000
0001 .

.

Direct Mapping Address

STA Routine
BUN Routine

Control
Storage

0011
0100

AND
LDA
STA   
BUN

0001
0010
0011
0100

.

.

.

Address
10 0000 010

Mapping
Bits 10 xxxx 010

ADD Routine

10 0001 010

10 0010 010

AND Routine

LDA Routine

10 0011 010

10 0100 010

STA Routine

BUN Routine

Computer Organization Computer Architecture
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MAPPING  OF  INSTRUCTIONS  TO  MICROROUTINES

Mapping from the OP-code of an instruction to the

SequencingMicroprogrammed Control

Mapping from the OP-code of an instruction to the
address of the Microinstruction which is the starting
microinstruction of its execution microprogram

OP-codeMachine
1  0  1  1      Address
OP-code

Mapping bits 0  x   x  x   x  0  0

Machine
Instruction

Mapping function implemented by ROM or PLA

Microinstruction
address 0  1   0  1   1  0  0

Mapping function implemented by ROM or PLA

OP-code

Mapping memoryMapping memory
(ROM or PLA)

Control address register

Computer Organization Computer Architecture

Control Memory
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MICROPROGRAM    EXAMPLE
Microprogram 

Computer Configuration

Microprogrammed Control

Computer Configuration

MUX
10 0

AR
10 0

PC
10 0

Address Memory
2048 x 16

PC

MUX

DR
15 0

SBR
6 0

CAR
6 0

Arithmetic
logic and
shift unit

15 0

Control memory
128 x 20

Control unit

Computer Organization Computer Architecture

AC
15 0
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MACHINE  INSTRUCTION  FORMAT
Microprogram Microprogrammed Control

Machine instruction format

I Opcode
15 14 11 10

Address
0

EA is the effective address
Symbol            OP-code             Description

I Opcode Address

Sample machine instructions

EA is the effective address
Symbol            OP-code             Description

ADD 0000 AC AC + M[EA]
BRANCH 0001 if (AC < 0) then (PC  EA)
STORE 0010 M[EA]  AC
EXCHANGE 0011 AC  M[EA], M[EA]  AC

Microinstruction Format
3 3 3 2 2 7

F1 F2 F3 CD BR AD
3 3 3 2 2 7

F1, F2, F3: Microoperation fields
CD: Condition for branching 
BR: Branch field

Computer Organization Computer Architecture

BR: Branch field
AD: Address field
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MICROINSTRUCTION  FIELD  DESCRIPTIONS - F1,F2,F3
Microprogram Microprogrammed Control

F1 Microoperation Symbol
000 None NOP
001 AC  AC + DR ADD
010 AC  0 CLRAC

F2 Microoperation Symbol
000 None NOP
001 AC  AC - DR SUB
010 AC  AC  DR OR

011 AC  AC + 1 INCAC
100 AC  DR DRTAC
101 AR  DR(0-10) DRTAR
110 AR  PC PCTAR
111 M[AR]  DR WRITE

011 AC  AC  DR AND
100 DR  M[AR] READ
101 DR  AC ACTDR
110 DR  DR + 1 INCDR
111 DR(0-10)  PC PCTDR111 M[AR]  DR WRITE 111 DR(0-10)  PC PCTDR

F3 Microoperation SymbolF3 Microoperation Symbol
000 None NOP
001 AC  AC  DR XOR
010 AC  AC’ COM
011 AC  shl AC SHL011 AC  shl AC SHL
100 AC  shr AC SHR
101 PC  PC + 1 INCPC
110 PC  AR ARTPC
111 Reserved

Computer Organization Computer Architecture
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MICROINSTRUCTION  FIELD  DESCRIPTIONS - CD, BR
Microprogram Microprogrammed Control

CD Condition      Symbol Comments
00 Always = 1 U Unconditional branch
01 DR(15) I Indirect address bit01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC = 0 Z Zero value in AC

BR        Symbol Function
00 JMP        CAR  AD if condition = 100 JMP        CAR  AD if condition = 1

CAR  CAR + 1 if condition = 0
01 CALL      CAR  AD, SBR  CAR + 1 if condition = 1

CAR  CAR + 1 if condition = 0
10 RET        CAR  SBR (Return from subroutine)10 RET        CAR  SBR (Return from subroutine)
11 MAP       CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Computer Organization Computer Architecture
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SYMBOLIC  MICROINSTRUCTIONS
• Symbols are used in microinstructions as in assembly language

Microprogram Microprogrammed Control

• Symbols are used in microinstructions as in assembly language
• A symbolic microprogram can be translated into its binary equivalent 

by a microprogram assembler.

Sample Format
five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic                    Label: may be empty or may specify a symbolic                    
address terminated with a colon

Micro-ops: consists of one, two, or three symbols                              
separated by commasseparated by commas

CD: one of {U, I, S, Z}, where U: Unconditional Branch
I:   Indirect address bit
S: Sign of ACS: Sign of AC
Z:  Zero value in AC 

BR: one of {JMP, CALL, RET, MAP}

Computer Organization Computer Architecture

AD: one of {Symbolic address, NEXT, empty}
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SYMBOLIC  MICROPROGRAM  - FETCH ROUTINE
Microprogram Microprogrammed Control

During FETCH, Read an instruction from memory
and decode the instruction and update PC

AR  PC
DR  M[AR], PC  PC + 1
AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Sequence of microoperations in the fetch cycle:

AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Symbolic microprogram for the fetch cycle:
ORG 64ORG 64
PCTAR               U   JMP   NEXT  
READ, INCPC    U   JMP   NEXT  
DRTAR               U   MAP              

FETCH:

Binary equivalents translated by an assemblerBinary equivalents translated by an assembler

1000000           110         000         000           00             00      1000001
1000001           000         100         101           00             00      1000010

Binary
address            F1           F2          F3           CD            BR           AD

Computer Organization Computer Architecture

1000001           000         100         101           00             00      1000010
1000010           101         000         000           00             11      0000000
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SYMBOLIC  MICROPROGRAM
• Control Storage:  128  20-bit words

Microprogram Microprogrammed Control

• Control Storage:  128  20-bit words
• The first 64 words: Routines for the 16 machine instructions
• The last 64 words:  Used for other purpose (e.g., fetch routine and other subroutines)
• Mapping:                 OP-code XXXX into 0XXXX00, the first address for the 16 routines are

0(0 0000 00), 4(0 0001 00),  8, 12, 16, 20, ..., 600(0 0000 00), 4(0 0001 00),  8, 12, 16, 20, ..., 60

ORG  0
NOP I CALL INDRCTADD:

Label              Microops                  CD       BR             AD
Partial Symbolic Microprogram

NOP
READ
ADD

ORG  4
NOP
NOP
NOP
ARTPC

I
U
U

S
U
I
U

CALL
JMP
JMP

JMP
JMP
CALL
JMP

INDRCT
NEXT
FETCH

OVER
FETCH
INDRCT
FETCH

ADD:

BRANCH:

OVER:
ARTPC

ORG  8
NOP
ACTDR
WRITE

ORG  12

U

I
U
U

JMP

CALL
JMP
JMP

FETCH

INDRCT
NEXT
FETCH

STORE:

ORG  12
NOP
READ
ACTDR, DRTAC
WRITE

ORG  64
PCTAR
READ, INCPC

I
U
U
U

U
U

CALL
JMP
JMP
JMP

JMP
JMP

INDRCT
NEXT
NEXT
FETCH

NEXT
NEXT

EXCHANGE:

FETCH:

Computer Organization Computer Architecture

PCTAR
READ, INCPC
DRTAR
READ
DRTAR

U
U
U
U
U

JMP
JMP
MAP
JMP
RET

NEXT
NEXT

NEXT

FETCH:

INDRCT:
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BINARY  MICROPROGRAM
Microprogrammed Control

Address Binary Microinstruction
Micro Routine         Decimal    Binary            F1          F2         F3       CD     BR       AD

ADD 0        0000000 000 000       000       01       01    1000011
1        0000001          000        100       000      00       00    0000010
2        0000010          001        000       000      00       00    1000000
3        0000011          000        000       000       00       00    1000000  

BRANCH 4        0000100          000        000       000       10       00    0000110
5        0000101          000        000       000       00      00    1000000
6        0000110          000        000        000       01      01    1000011
7        0000111          000        000        110       00      00    1000000

STORE 8        0001000          000         000        000       01      01    1000011STORE 8        0001000          000         000        000       01      01    1000011
9        0001001          000         101       000       00      00    0001010
10      0001010          111         000       000       00      00    1000000
11      0001011          000         000       000       00      00    1000000

EXCHANGE           12      0001100          000         000       000       01      01    1000011
13      0001101          001         000       000       00      00    000111013      0001101          001         000       000       00      00    0001110
14      0001110          100         101       000       00      00    0001111
15      0001111          111         000       000       00      00    1000000

FETCH                64      1000000          110         000       000       00      00    1000001
65      1000001          000         100       101       00      00    1000010

This microprogram can be implemented using ROM  

65      1000001          000         100       101       00      00    1000010
66      1000010           101         000       000       00      11    0000000

INDRCT               67      1000011          000          100       000       00      00    1000100
68      1000100          101          000       000       00      10    0000000

Computer Organization Computer Architecture

This microprogram can be implemented using ROM  
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DESIGN  OF  CONTROL  UNIT 
- DECODING  ALU CONTROL INFORMATION -

Design of Control UnitMicroprogrammed Control

microoperation fields
F1 F2 F3

3 x 8 decoder
7 6 5 4 3 2 1 0

3 x 8 decoder
7 6 5 4 3 2 1 0

3 x 8 decoder
7 6 5 4 3 2 1 0

Arithmetic
logic and
shift unit

AND
ADD

DRTAC

AC

DR

AC
Load

From
PC

From
DR(0-10)

Select 0 1
Multiplexers

D
R

TA
R

PC
TA

R

Select
Multiplexers

ARLoad Clock

Computer Organization Computer Architecture

Decoding of Microoperation Fields
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MICROPROGRAM  SEQUENCER  

- NEXT MICROINSTRUCTION  ADDRESS  LOGIC -
Design of Control Unit

Branch, CALL Address

Microprogrammed Control

3 2 1 0

External
(MAP)

L

In-Line
RETURN form Subroutine

Branch, CALL Address

S1S0 Address Source
00     CAR + 1, In-Line

Subroutine 
CALL

3 2 1 0
S
S

1
0

MUX1 SBR L

Incrementer

Address 
source 
selection

00     CAR + 1, In-Line
01     SBR  RETURN
10     CS(AD), Branch or CALL 
11     MAP

CARClock

Control Storage

MUX-1 selects an address from one of four sources and routes it into a CAR

- In-Line Sequencing  CAR + 1
- Branch, Subroutine Call  CS(AD)

Computer Organization Computer Architecture

- Branch, Subroutine Call  CS(AD)
- Return from Subroutine  Output of SBR
- New Machine instruction  MAP
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MICROPROGRAM  SEQUENCER
- CONDITION  AND  BRANCH  CONTROL -

Design of Control UnitMicroprogrammed Control

TMUX2
1
I TestFrom L(load SBR with PC) 

for subroutine Call
L

Input
logicI0

I
1

TMUX2
Select

I
S
Z

Test

CD Field of CS

From 
CPU BR field

of CS

for subroutine Call
S0
S1

for next address
selection

I1I0T    Meaning   Source of Address                  S1S0 L

Input Logic
I1I0T    Meaning   Source of Address                  S1S0 L

000       In-Line     CAR+1                                       00       0
001        JMP        CS(AD)                                       01       0
010       In-Line     CAR+1                                       00       0
011       CALL       CS(AD) and SBR <- CAR+1     01       1
10x        RET         SBR                                          10       010x        RET         SBR                                          10       0
11x        MAP         DR(11-14)                                 11       0

S1 = I1
S0 = I1I0 + I1’T

Computer Organization Computer Architecture

S0 = I1I0 + I1’T
L = I1’I0T
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MICROPROGRAM  SEQUENCER
Design of Control UnitMicroprogrammed Control

3 2 1 0

External
(MAP)

LoadInputI
L

S1 MUX1 SBR
Load

Incrementer

Input
logic0

T

1

I
1 S0

Incrementer

CAR

MUX2
Select

1
I
S
Z

Test

Clock

Control memory

Microops CD BR ADMicroops CD BR AD
. . .. . .

Computer Organization Computer Architecture
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MICROINSTRUCTION  FORMAT
Microinstruction Format Microprogrammed Control

Information in a Microinstruction
- Control Information
- Sequencing Information
- Constant- Constant

Information which is useful when feeding into the system

These information needs to be organized in some way for 
- Efficient use of the microinstruction bits- Efficient use of the microinstruction bits
- Fast decoding

Field EncodingField Encoding

- Encoding the microinstruction bits
- Encoding slows down the execution speed

due to the decoding delaydue to the decoding delay
- Encoding also reduces the flexibility due  to

the decoding hardware

Computer Organization Computer Architecture
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HORIZONTAL  AND VERTICAL  
MICROINSTRUCTION  FORMAT

Horizontal Microinstructions

Microinstruction Format Microprogrammed Control

Horizontal Microinstructions
Each bit directly controls each micro-operation or each control point
Horizontal implies a long microinstruction word
Advantages: Can control a variety of components operating in parallel.

--> Advantage of efficient hardware utilization--> Advantage of efficient hardware utilization
Disadvantages: Control word bits are not fully utilized 

--> CS becomes large --> Costly
Vertical Microinstructions

A microinstruction format that is not horizontalA microinstruction format that is not horizontal
Vertical implies a short microinstruction word 
Encoded Microinstruction fields

--> Needs decoding circuits for one or two levels of decoding --> Needs decoding circuits for one or two levels of decoding 

One-level decoding

Field A Field B

Two-level  decoding

Field A
2 bits

Field B
6 bitsField A

2 bits

2 x 4
Decoder

3 x 8
Decoder

Field B
3 bits 2 bits

2 x 4
Decoder

6 x 64
Decoder

6 bits

Computer Organization Computer Architecture

1 of 4 1 of 8
Decoder and 
selection logic
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NANOSTORAGE  AND  NANOINSTRUCTION
The decoder circuits in a vertical microprogram 

Control Storage Hierarchy Microprogrammed Control

The decoder circuits in a vertical microprogram 
storage organization can be replaced by a ROM

=> Two levels of control storage
First level      - Control Storage
Second level - Nano StorageSecond level - Nano Storage

Two-level microprogram 

First level 
-Vertical format Microprogram 

Second level 
-Horizontal format Nanoprogram -Horizontal format Nanoprogram 
- Interprets the microinstruction fields, thus converts a vertical 

microinstruction format into a horizontal 
nanoinstruction format.

Usually, the microprogram consists of a large number of short 
microinstructions, while the nanoprogram contains fewer words 
with longer nanoinstructions.

Computer Organization Computer Architecture



142

TWO-LEVEL  MICROPROGRAMMING  - EXAMPLE
* Microprogram: 2048 microinstructions of 200 bits each

Control Storage Hierarchy Microprogrammed Control

* Microprogram: 2048 microinstructions of 200 bits each
* With 1-Level Control Storage: 2048 x 200 = 409,600 bits
* Assumption:

256 distinct microinstructions among 2048
* With 2-Level Control Storage:* With 2-Level Control Storage:

Nano Storage: 256 x 200 bits to store 256 distinct nanoinstructions 
Control storage: 2048 x 8 bits

To address 256 nano storage locations 8 bits are needed
* Total 1-Level control storage: 409,600 bits* Total 1-Level control storage: 409,600 bits
Total 2-Level control storage: 67,584 bits (256 x 200 + 2048 x 8)

Control address registerControl address register

11 bits

Control memory
2048 x 8

Microinstruction (8 bits)
Nanomemory address

Nanomemory
256 x 200

Computer Organization Computer Architecture

Nanoinstructions (200 bits)
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Overview
Central Processing Unit

• Instruction Set Processor (ISP)• Instruction Set Processor (ISP)
• Central Processing Unit (CPU)
• A typical computing task consists of a series of 

steps specified by a sequence of machine steps specified by a sequence of machine 
instructions that constitute a program.

• An instruction is executed by carrying out a • An instruction is executed by carrying out a 
sequence of more rudimentary operations.

Computer Organization Computer Architecture
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Fundamental Concepts
Central Processing Unit

• Processor fetches one instruction at a time and • Processor fetches one instruction at a time and 
perform the operation specified.

• Instructions are fetched from successive 
memory locations until a branch or a jump memory locations until a branch or a jump 
instruction is encountered.

• Processor keeps track of the address of the • Processor keeps track of the address of the 
memory location containing the next instruction 
to be fetched using Program Counter (PC).

• Instruction Register (IR)• Instruction Register (IR)

Computer Organization Computer Architecture
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Executing an Instruction
Central Processing Unit

• Fetch the contents of the memory location • Fetch the contents of the memory location 
pointed to by the PC. The contents of this 
location are loaded into the IR (fetch phase).

IR ← [[PC]]IR ← [[PC]]
• Assuming that the memory is byte addressable, 

increment the contents of the PC by 4 (fetch increment the contents of the PC by 4 (fetch 
phase).

PC ← [PC] + 4
• Carry out the actions specified by the instruction 

in the IR (execution phase).

Computer Organization Computer Architecture
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Processor Organization
Central Processing Unit

bus

Control signals

Internal processor

Address
lines

bus
Memory

PC

MAR

Instruction
decoder and
control logicMDR HAS 

TWO INPUTS 
AND TWO 

lines
Data

bus

MDR

Y

IR
Datapath

AND TWO 
OUTPUTS

Add

R0

A B

MUXSelect

Constant 4

Carry-in

ALU

Z

XOR

Sub

TEMP

control
ALU

lines

R n 1- 
A B

Textbook Page 413

Computer Organization Computer Architecture

Z

Figure 7.1.  Single-bus organization of the datapath inside a processor.

Textbook Page 413
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Executing an Instruction
Central Processing Unit

• Transfer a word of data from one processor register • Transfer a word of data from one processor register 
to another or to the ALU.

• Perform an arithmetic or a logic operation and store 
the result in a processor register.the result in a processor register.

• Fetch the contents of a given memory location and 
load them into a processor register.

• Store a word of data from a processor register into a 
given memory location.

Computer Organization Computer Architecture
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Register Transfers
Central Processing Unit

Riin

Ri

bus
Internal processor

Yin

Ri

Riout

Y

Constant 4

Select

BA
ALU

MUXSelect

Z

Zin

Computer Organization Computer Architecture

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.
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Register Transfers
Central Processing Unit

• All operations and data transfers are controlled by the processor 
clock.

• All operations and data transfers are controlled by the processor 
clock. Bus

0

D Q

Q
1

Ri

Clock

Riout

Ri in

Computer Organization Computer Architecture
Figure 7.3. Input and output gating for one register bit.Figure 7.3.  Input and output gating for one register bit.
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Performing an Arithmetic or Logic 
Operation

Central Processing Unit

Operation
• The ALU is a combinational circuit that has no • The ALU is a combinational circuit that has no 

internal storage.
• ALU gets the two operands from MUX and bus. 

The result is temporarily stored in register Z.The result is temporarily stored in register Z.
• What is the sequence of operations to add the 

contents of register R1 to those of R2 and store contents of register R1 to those of R2 and store 
the result in R3?

1. R1out, Yin
2. R2out, SelectY, Add, Zin2. R2out, SelectY, Add, Zin
3. Zout, R3in

Computer Organization Computer Architecture
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Fetching a Word from Memory
Central Processing Unit

• Address into MAR; issue Read operation; data into MDR.• Address into MAR; issue Read operation; data into MDR.
Memory-bus

data lines
Internal processor

busMDRoutMDRoutE

MDR

MDRinMDR inE

Computer Organization Computer Architecture
Figure 7.4. Connection and control signals for register MDR.Figure 7.4.  Connection and control signals for register MDR.
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Fetching a Word from Memory
Central Processing Unit

• The response time of each memory access 
varies (cache miss, memory-mapped I/O,…).varies (cache miss, memory-mapped I/O,…).

• To accommodate this, the processor waits until 
it receives an indication that the requested it receives an indication that the requested 
operation has been completed (Memory-
Function-Completed, MFC).

• Move (R1), R2• Move (R1), R2
 MAR ← [R1]
 Start a Read operation on the memory bus
 Wait for the MFC response from the memory Wait for the MFC response from the memory
 Load MDR from the memory bus
 R2 ← [MDR]

Computer Organization Computer Architecture
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Timing
1 2Step 3

Central Processing Unit

Clock

MARin
Assume MAR

MAR ← [R1]

Address

Assume MAR
is always available
on the address lines
of the memory bus.

Start a Read operation on the memory bus

MR

Read

Data

MDRinE

Wait for the MFC response from the memory

MFC

MDRout

Wait for the MFC response from the memory

Load MDR from the memory bus

Computer Organization Computer ArchitectureFigure 7.5. Timing of a memory Read operation.

R2 ← [MDR]
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Execution of a Complete 
Instruction

Central Processing Unit

Instruction
• Add (R3), R1• Add (R3), R1
• Fetch the instruction
• Fetch the first operand (the contents of the memory 

location pointed to by R3)location pointed to by R3)
• Perform the addition
• Load the result into R1• Load the result into R1

Computer Organization Computer Architecture
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Architecture
Central Processing Unit

Riin

Ri

bus
Internal processor

Yin

Ri

Riout

Y

Constant 4

Select

BA
ALU

MUXSelect

Z

Zin

Computer Organization Computer Architecture

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.
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Execution of a Complete 
Instruction

Central Processing Unit

Instruction
bus

Control signals

Internal processor

Add (R3), R1

Step Action

1 PCout , MAR in , Read, Select4,Add, Zin

Address
lines

bus
Memory

PC

MAR

Instruction
decoder and
control logic

1 PCout , MAR in , Read, Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDR out , IR in

4 R3out , MAR in , Read

lines
Data

bus

MDR

Y

IR

5 R1out , Yin , WMF C

6 MDR out , SelectY, Add, Zin

7 Zout , R1in , End
Add

R0

A B

MUXSelect

Constant 4

Figure 7.6. Control sequencefor execution of the instruction Add (R3),R1.

Carry-in

ALU

Z

XOR

Sub

TEMP

control
ALU

lines

R n 1- 
A B

Computer Organization Computer Architecture

Z

Figure 7.1.  Single-bus organization of the datapath inside a processor.
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Execution of Branch Instructions
Central Processing Unit

• A branch instruction replaces the contents of PC • A branch instruction replaces the contents of PC 
with the branch target address, which is usually 
obtained by adding an offset X given in the branch 
instruction.instruction.

• The offset X is usually the difference between the 
branch target address and the address immediately 
following the branch instruction.following the branch instruction.

• Conditional branch

Computer Organization Computer Architecture
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Execution of Branch Instructions
Central Processing Unit

Step Action

1 PCout, MAR in , Read,Select4,Add, Z inout in in

2 Zout, PCin , Yin, WMF C
3 MDRout , IR in

4 Offset-field-of-IR , Add, Z4 Offset-field-of-IRout, Add, Z in

5 Zout, PCin, End

Figure 7.7.  Control sequence for an unconditional branch instruction.

Computer Organization Computer Architecture

Figure 7.7.  Control sequence for an unconditional branch instruction.



159

Multiple-Bus Organization
Central Processing Unit

Bus A Bus B Bus C

Incrementer

PC

Register
file

Constant 4

ALU

A

B

R

M
U

X
Instruction
decoder

B

IR

MDR

MAR

IR

Computer Organization Computer Architecture

Memory bus
data lines

Figure 7.8. Three-bus organization of the datapath.

Address
lines



160

Multiple-Bus Organization
Central Processing Unit

• Add R4, R5, R6• Add R4, R5, R6

Step Action

1 PC
out

, R=B, MAR
in

, Read, IncPC

2 WMF C

3 MDR
outB

, R=B, IR
in

4 R4
outA

, R5
outB

, SelectA, Add, R6
in

, End

Figure 7.9. Control sequence for the instruction.  Add R4,R5,R6,

Computer Organization Computer Architecture

Figure 7.9. Control sequence for the instruction.  Add R4,R5,R6,
for the three-bus organization in Figure 7.8. 
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Quiz
Central Processing Unit

• What is the control PC

bus

Control signals

Internal processor

• What is the control 
sequence for execution 
of the instruction

Add  R1, R2

Address
lines

bus
Memory

PC

MAR

Instruction
decoder and
control logic

Add  R1, R2
including the instruction 
fetch phase? (Assume 

lines
Data

bus

MDR

Y

IR

R0
fetch phase? (Assume 
single bus architecture)

Add

Sub

R0

ALU R n 1- 
A B

MUXSelect

Constant 4

Carry-in

ALU

Z

XOR

Sub

TEMP

control
ALU

lines

R n 1- 

Computer Organization Computer ArchitectureFigure 7.1.  Single-bus organization of the datapath inside a processor.
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Control Unit Organization
Central Processing Unit

CLKClock Control step
counter

External

IR encoder
Decoder/

inputs

Condition

External

codes
Condition

Control signals

Computer Organization Computer Architecture

Figure 7.10. Control unit organization.
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Detailed Block Description
Central Processing Unit

ResetCLK
Clock

counter
Control step

Step decoder

External
inputs

T1 T2 Tn

INS1

INS2 inputs

Encoder

Condition
codes

decoder
Instruction

IR

2

INSm

Control signals

Run End

Computer Organization Computer ArchitectureFigure 7.11. Separation of the decoding and encoding functions.

Control signals
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Generating Zin

Central Processing Unit

• Zin = T1 + T6 • ADD + T4 • BR + …• Zin = T1 + T6 • ADD + T4 • BR + …
AddBranch

T4 T6

T1

Computer Organization Computer Architecture

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.
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Generating End
Central Processing Unit

• End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…• End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

T

Add Branch
Branch<0

T

NN

TTT7 T5T4T5

End

Computer Organization Computer Architecture
Figure 7.13. Generation of the End control signal.

End
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A Complete Processor
Central Processing Unit

Instruction
unit

Integer
unit

Floating-point
unit

Instruction
cache

Data
cache

Bus interface Processor

Main
memory

Input/
Output

System bus

Computer Organization Computer ArchitectureFigure 7.14. Block diagram of a complete processor.
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Overview
Microprogrammed Control

• Control signals are generated by a program similar to machine 
language programs.

• Control signals are generated by a program similar to machine 
language programs.

• Control Word (CW); microroutine; microinstruction
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Figure 7.15 An example of microinstructions for Figure 7.6.



168

Overview
Microprogrammed Control

Step Action

1 PCout , MAR in , Read, Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDR out , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C5 R1out , Yin , WMF C

6 MDR out , SelectY, Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor execution of the instruction Add (R3),R1.

Computer Organization Computer Architecture
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Overview
Microprogrammed Control

• Control store• Control store

generator

Starting
addressIR One function

cannot be carried
out by this simple
organization.

Clock PC

organization.

Control

Clock PC

store
Control

CW

Computer Organization Computer Architecture
Figure 7.16. Basic organization of a microprogrammed control unit.
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Overview
Microprogrammed Control

• The previous organization cannot handle the situation when the 
control unit is required to check the status of the condition codes 

• The previous organization cannot handle the situation when the 
control unit is required to check the status of the condition codes 
or external inputs to choose between alternative courses of action.

• Use conditional branch microinstruction.
AddressMicroinstruction

0 PCout , MAR in , Read,Select4,Add, Zin

1 Z , PC , Y , WMFC1 Zout , PCin , Yin , WMFC
2 MDRout , IRin

3 Branchto startingaddressof appropriatemicroroutine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 If N=0, thenbranchto microinstruction0
26 Offset-field-of-IRout , SelectY,Add, Zin

27 Zout , PCin , End

Computer Organization Computer Architecture

27 Zout , PCin , End

Figure 7.17.  Microroutine for the instruction Branch<0.
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Overview
Microprogrammed Control

Starting and
branch address Condition

codes

inputs
External

IR
generator

branch address Condition
codesIR

Clock PCClock PC

Control
store CW

Computer Organization Computer Architecture

Figure 7.18. Organization of the control unit to allow
conditional branching in the microprogram.
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Microinstructions
Microprogrammed Control

• A straightforward way to structure microinstructions • A straightforward way to structure microinstructions 
is to assign one bit position to each control signal.

• However, this is very inefficient.
• The length can be reduced: most signals are not • The length can be reduced: most signals are not 

needed simultaneously, and many signals are 
mutually exclusive.

• All mutually exclusive signals are placed in the same 
group in binary coding.

Computer Organization Computer Architecture
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Partial Format for the 
Microinstructions

Microprogrammed Control

Microinstructions
F1 F2 F3 F4 F5

Microinstruction

F2 (3 bits)

000: No transfer
001: PCin
010: IRin

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transfer
0001: PCout
0010: MDRout

000: No transfer
001: MARin
010: MDRin

0000: Add
0001: Sub

00: No action
01: Read
10: Writein

011: Zin
100: R0in
101: R1in
110: R2in
111: R3in

out
0011: Zout
0100: R0out
0101: R1out
0110: R2out
0111: R3out
1010: TEMPout

in
011: TEMPin
100: Yin 1111: XOR

16 ALU
functions

1010: TEMPout
1011: Offsetout

F6 F7 F8
What is the price paid for 
this scheme?F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY
1: Select4

0: No action
1: WMFC

0: Continue
1: End

Computer Organization Computer ArchitectureFigure 7.19. An example of a partial format for field-encoded microinstructions.
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Further Improvement
Microprogrammed Control

• Enumerate the patterns of required signals in all • Enumerate the patterns of required signals in all 
possible microinstructions. Each meaningful 
combination of active control signals can then be 
assigned a distinct code.assigned a distinct code.

• Vertical organization
• Horizontal organization

Computer Organization Computer Architecture
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Microprogram Sequencing
Microprogrammed Control

• If all microprograms require only straightforward • If all microprograms require only straightforward 
sequential execution of microinstructions except 
for branches, letting a μPC governs the 
sequencing would be efficient.sequencing would be efficient.

• However, two disadvantages:
 Having a separate microroutine for each machine instruction 

results in a large total number of microinstructions and a large results in a large total number of microinstructions and a large 
control store.

 Longer execution time because it takes more time to carry out 
the required branches.the required branches.

• Example: Add src, Rdst
• Four addressing modes: register, autoincrement, 

Computer Organization Computer Architecture

• Four addressing modes: register, autoincrement, 
autodecrement, and indexed (with indirect 
forms).
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- Bit-ORing
- Wide-Branch Addressing- Wide-Branch Addressing
- WMFC

Computer Organization Computer Architecture
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OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

Microprogrammed Control

034781011

Address MicroinstructionAddress Microinstruction
(octal)

000 PCout, MARin, Read, Select4, Add, Zin

001 Zout, PCin, Yin, WMFC
002 MDR , IR002 MDRout, IRin

003 Branch {PC 101 (from Instruction decoder);
PC5,4  [IR10,9]; PC3 

121 Rsrcout, MARin, Read, Select4, Add, Zin

122 Zout, Rsrcin

[IR10]×[IR9]×[IR8]}

122 Zout, Rsrcin
123
170 MDRout, MARin, Read, WMFC
171 MDRout, Yin

172 Rdstout, SelectY, Add, Zin

Branch {PC 170;PC0 [IR8]}, WMFC

Figure 7.21.Microinstruction for Add (Rsrc)+,Rdst.

172 Rdstout, SelectY, Add, Zin

173 Zout, Rdstin, End

Computer Organization Computer Architecture

Figure 7.21.Microinstruction for Add (Rsrc)+,Rdst.
Note:Microinstruction at location 170 is not executed for this addressing mode. 
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Microinstructions with Next-
Address Field

Microprogrammed Control

Address Field
• The microprogram we discussed requires 

several branch microinstructions, which perform several branch microinstructions, which perform 
no useful operation in the datapath.

• A powerful alternative approach is to include an • A powerful alternative approach is to include an 
address field as a part of every microinstruction 
to indicate the location of the next 
microinstruction to be fetched.microinstruction to be fetched.

• Pros: separate branch microinstructions are 
virtually eliminated; few limitations in assigning 
addresses to microinstructions.addresses to microinstructions.

• Cons: additional bits for the address field 
(around 1/6)

Computer Organization Computer Architecture
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Microinstructions with Next-
Address Field

Microprogrammed Control

Address Field
Condition

IR

External Condition
codes

Decoding circuits

Inputs
External

AR

Control store

AR

Next address

Microinstruction decoder

 I R

Computer Organization Computer ArchitectureFigure 7.22.   Microinstruction-sequencing organization.

Control signals
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F0 F1 F2 F3

Microinstruction
Microprogrammed Control

F1 (3 bits)

000: No transfer
001: PCout
010: MDRout
011: Zout
100: Rsrc

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transfer
001: PCin
010: IRin
011: Zin
100: Rsrc

000: No transfer
001: MARin

Address of next
microinstruction

010: MDRin
011: TEMPin
100: Y100: Rsrcout

101: Rdstout
110: TEMPout

100: Rsrcin
101: Rdstin

100: Yin

F4 F5 F6 F7

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add
0001: Sub

0: SelectY
1: Select4

00: No action
01: Read

F7 (1 bit)

0: No action
1: WMFC0001: Sub 1: Select401: Read

1111: XOR

10: Write
1: WMFC

F8 F9 F10

F8 (1 bit) F9 (1 bit) F10 (1 bit)

0: No action
1: ORindsrc

0: No action
1: ORmode

0: NextAdrs
1: InstDec

Computer Organization Computer Architecture

1: ORindsrc1: ORmode1: InstDec

Figure 7.23. Format for microinstructions in the example of Section 7.5.3.
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Implementation of the Microroutine
Microprogrammed Control

F9 F10F8F7F6F5F4F2address
Octal

F0 F1 F3 F9

0

0
0

F10

0
0

00

0
0

F8F7F6F5F4

000 0 0 0 0 0
000000

1100000
10
0

0

0
1 0

0

00 01
100
10

F2

1

110 0 0 0 0 0
1
2

00
00

address

1 0000000
10000000

F0 F1

0

0 0 10 0
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0

1
0

F3
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0
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0

00

0
0

000 0 0 0 0 0

000000 10
10 10000 0
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0
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00 01
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(See Figure 7.23 for encoded signals.)
Figure 7.24.  Implementation of the microroutine  of Figure 7.21 using a
 next-microinstruction address field.
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R15in R15out R0in R0out

Microprogrammed Control

Decoder

Decoder

Rsrc RdstIR

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

InstDecout

ORmode

ORindsrc

AR

Control store

Next address F1 F2 F10F9F8

Rdstout

decoder
Microinstruction

Rdstin

Rsrcout

Rsrcin

Computer Organization Computer Architecture

Other control signals

Figure 7.25. Some details of the control-signal-generating circuitry.
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bit-ORing
Microprogrammed Control

Computer Organization Computer Architecture
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PIPELINING  AND  VECTOR  PROCESSING
Pipelining and Vector Processing

• Parallel Processing• Parallel Processing

• Pipelining

• Arithmetic Pipeline• Arithmetic Pipeline

• Instruction Pipeline

• RISC Pipeline• RISC Pipeline

• Vector Processing

• Array Processors• Array Processors

Computer Organization Computer Architecture
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PARALLEL  PROCESSING
Parallel ProcessingPipelining and Vector Processing

Execution of Concurrent Events in the computing 

Levels of Parallel Processing 

Execution of Concurrent Events in the computing 
process to achieve faster Computational Speed

Levels of Parallel Processing 

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

Computer Organization Computer Architecture
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PARALLEL  COMPUTERS
Parallel ProcessingPipelining and Vector Processing

Architectural Classification

– Flynn's classification
» Based on the multiplicity of Instruction Streams and » Based on the multiplicity of Instruction Streams and 

Data Streams
» Instruction Stream

• Sequence of Instructions read from memory
» Data Stream

• Operations performed on the data in the processor

Number of Data Streams

Single Multiple

Number of
Instruction
Streams

Single

Single Multiple

SISD SIMD

Computer Organization Computer Architecture

Streams Multiple MISD MIMD
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COMPUTER  ARCHITECTURES  FOR  PARALLEL  

PROCESSING

Parallel ProcessingPipelining and Vector Processing

Von-Neuman 
based

SISD Superscalar processors

Superpipelined processors

VLIW

Dataflow

MISD

SIMD

Nonexistence

Array processors

Systolic arrays

Associative processorsDataflow

Reduction
MIMD

Associative processors

Shared-memory multiprocessors

Bus based
Crossbar switch based
Multistage IN basedMultistage IN based

Message-passing multicomputers

Hypercube
Mesh
Reconfigurable

Computer Organization Computer Architecture
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SISD  COMPUTER  SYSTEMS
Parallel ProcessingPipelining and Vector Processing

Control
Unit

Processor
Unit

MemoryData stream

Instruction stream

Characteristics

- Standard von Neumann machine- Standard von Neumann machine
- Instructions and data are stored in memory
- One operation at a time

Limitations

Von Neumann bottleneck

Maximum speed of the system is limited by the
Memory Bandwidth (bits/sec or bytes/sec)

- Limitation on Memory Bandwidth

Computer Organization Computer Architecture

- Limitation on Memory Bandwidth
- Memory is shared by CPU and I/O
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SISD PERFORMANCE  IMPROVEMENTS
Parallel ProcessingPipelining and Vector Processing

• Multiprogramming• Multiprogramming

• Spooling

• Multifunction processor

• Pipelining

• Exploiting instruction-level parallelism
- Superscalar- Superscalar
- Superpipelining
- VLIW (Very Long Instruction Word)

Computer Organization Computer Architecture
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MISD  COMPUTER  SYSTEMS
Parallel ProcessingPipelining and Vector Processing

M CU P

M CUM CU P

M CU P

•
•
•

•
•
•

Memory

Data streamM CU P

Instruction stream

Characteristics

- There is no computer at present that can be
classified as MISDclassified as MISD

Computer Organization Computer Architecture
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SIMD  COMPUTER  SYSTEMS
Memory

Parallel ProcessingPipelining and Vector Processing

Control Unit

Memory

Data bus

Instruction stream

P P P• • •

Instruction stream

Data stream

Processor units

Alignment network

Data stream

M MM • • • Memory modules

Characteristics

- Only one copy of the program exists

Computer Organization Computer Architecture

- Only one copy of the program exists
- A single controller executes one instruction at a time
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TYPES  OF  SIMD  COMPUTERS
Parallel ProcessingPipelining and Vector Processing

Array Processors

- The control unit broadcasts instructions to all PEs,- The control unit broadcasts instructions to all PEs,
and all active PEs execute the same instructions

- ILLIAC IV, GF-11, Connection Machine, DAP, MPP

Systolic Arrays

- Regular arrangement of a large number of 
very simple processors constructed on very simple processors constructed on 
VLSI circuits

- CMU Warp, Purdue CHiP

Associative Processors

- Content addressing
- Data transformation operations over many sets

Computer Organization Computer Architecture

- Data transformation operations over many sets
of arguments with a single instruction

- STARAN, PEPE
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MIMD  COMPUTER  SYSTEMS
Parallel ProcessingPipelining and Vector Processing

Interconnection Network

P M P MP M • • •

Shared Memory

Characteristics

- Multiple processing units- Multiple processing units

- Execution of  multiple instructions on multiple data

Types of MIMD computer systems

- Shared memory multiprocessors

Computer Organization Computer Architecture

- Shared memory multiprocessors

- Message-passing multicomputers
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SHARED  MEMORY  MULTIPROCESSORS
Parallel ProcessingPipelining and Vector Processing

Interconnection Network(IN)

• • •M MM

Buses,
Multistage IN,Interconnection Network(IN)

• • •P PP

Multistage IN,
Crossbar Switch

Characteristics
All processors have equally direct access to 

one large memory address space
Example systemsExample systems

Bus and cache-based systems
- Sequent Balance, Encore Multimax

Multistage IN-based systems
- Ultracomputer, Butterfly, RP3, HEP- Ultracomputer, Butterfly, RP3, HEP

Crossbar switch-based systems
- C.mmp, Alliant FX/8

Limitations

Computer Organization Computer Architecture

Limitations
Memory access latency
Hot spot problem
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MESSAGE-PASSING  MULTICOMPUTER
Parallel ProcessingPipelining and Vector Processing

Message-Passing Network

• • •P PP

Point-to-point connections

Characteristics

M M M• • •

- Interconnected computers
- Each processor has its own memory, and 

communicate via message-passing

Example systems

- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Limitations

Computer Organization Computer Architecture

- Communication overhead
- Hard to programming
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PIPELINING
A technique of decomposing a sequential process 

PipeliningPipelining and Vector Processing

A technique of decomposing a sequential process 
into suboperations, with each subprocess being 
executed in a partial dedicated segment that 
operates concurrently with all other segments.

Ai * Bi + Ci for i = 1, 2, 3, ... , 7
Ai

R1 R2

MemoryBi Ci

Segment 1
R1 R2

Multiplier
Segment 2

R3 R4

Adder
Segment 3

R1  Ai,  R2  Bi Load Ai and Bi
R3  R1 * R2,  R4  C Multiply and load C

R5

Computer Organization Computer Architecture

R3  R1 * R2,  R4  Ci Multiply and load Ci
R5  R3 + R4 Add 
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OPERATIONS  IN  EACH  PIPELINE  STAGE
PipeliningPipelining and Vector Processing

Clock
Pulse Segment 1 Segment 2 Segment 3

Number     R1       R2           R3            R4 R5                     Number     R1       R2           R3            R4 R5                     
1            A1       B1
2            A2       B2         A1 * B1     C1
3            A3       B3         A2 * B2     C2          A1 * B1 + C1
4            A4       B4         A3 * B3     C3          A2 * B2 + C2
5            A5       B5         A4 * B4     C4          A3 * B3 + C3
6            A6       B6         A5 * B5     C5          A4 * B4 + C4
7            A7       B7         A6 * B6     C6          A5 * B5 + C57            A7       B7         A6 * B6     C6          A5 * B5 + C5
8 A7 * B7      C7          A6 * B6 + C6
9 A7 * B7 + C7

Computer Organization Computer Architecture
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GENERAL  PIPELINE
PipeliningPipelining and Vector Processing

General Structure of a 4-Segment Pipeline
Clock

S R1 1 S R2 2 S R3 3 S R4 4Input

Space-Time Diagram
1 2 3 4 5 6 7 8 9

T1

T1

T2

T2

T3

T3 T4

T4 T5

T5 T6

T6
Clock cycles

Segment 1

2

T1

T1

T2

T2

T3

T3 T4

T4 T5

T5 T6

T63

4

Computer Organization Computer Architecture
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PIPELINE  SPEEDUP
PipeliningPipelining and Vector Processing

n:   Number of tasks to be performed

Conventional Machine (Non-Pipelined)
t :    Clock cycle tn:    Clock cycle 
:    Time required to complete the n tasks
 = n * tn

Pipelined Machine (k stages)
tp:   Clock cycle (time to complete each suboperation)
:   Time required to complete the n tasks
 = (k + n - 1) * tp = (k + n - 1) * tp

Speedup
Sk:   Speedup

Sk = n*tn / (k + n - 1)*tp

Sk = tn
t (  = k,  if tn = k * tp )lim

Computer Organization Computer Architecture

n  
Sk = tp

(  = k,  if tn = k * tp )lim
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PIPELINE  AND  MULTIPLE  FUNCTION  UNITS
Example

PipeliningPipelining and Vector Processing

Example
- 4-stage pipeline
- subopertion in each stage;  tp = 20nS
- 100 tasks to be executed
- 1 task in non-pipelined system;  20*4 = 80nS- 1 task in non-pipelined system;  20*4 = 80nS

Pipelined System
(k + n - 1)*tp = (4 + 99) * 20 = 2060nSp

Non-Pipelined System
n*k*tp = 100 * 80 = 8000nS

SpeedupSpeedup
Sk = 8000 / 2060 = 3.88 

4-Stage Pipeline is basically identical to the system
with 4 identical function units 

P 1

I i

P2

I i+1

P3

I i+2

P 4

I i+3

Multiple Functional Units

4-Stage Pipeline is basically identical to the system
with 4 identical function units 

Computer Organization Computer Architecture

P 1 P2 P3 P 4Multiple Functional Units
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ARITHMETIC  PIPELINE
Floating-point adder Exponents Mantissas

Arithmetic PipelinePipelining and Vector Processing

Floating-point adder
X = A x 2a

Y = B x 2b

R

a b
Exponents

R

A B
Mantissas

[1]  Compare the exponents
[2]  Align the mantissa
[3]  Add/sub the mantissa
[4]  Normalize the result

Compare
exponents

by subtraction

R

DifferenceSegment 1:

Choose exponent Align mantissa

R

Segment 2:

Add or subtract
mantissas

RR

Segment 3:

R

Normalize
result

R

Adjust
exponentSegment 4:

Computer Organization Computer Architecture

RR
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4-STAGE  FLOATING  POINT  ADDER
A = a x 2p B = b x 2q

Arithmetic PipelinePipelining and Vector Processing

A = a x 2p B = b x 2q

p a q b

OtherStages: Exponent
subtractor

Fraction
selector

Fraction with min(p,q)
Right shifter

Other
fraction

t = |p - q|
r = max(p,q)

Stages:
S1

Fraction
adder

r c

S2

Leading zero
counter

Left shifter
c

r

S3

Exponent
adder

r

d

S4

Computer Organization Computer Architecture

s d

C = A + B = c x 2  = d x 2  r s
(r = max (p,q),  0.5  d < 1)
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INSTRUCTION  CYCLE
Instruction PipelinePipelining and Vector Processing

Six Phases* in an Instruction Cycle
[1]  Fetch an instruction from memory
[2]  Decode the instruction
[3]  Calculate the effective address of the operand[3]  Calculate the effective address of the operand
[4]  Fetch the operands from memory
[5]  Execute the operation
[6]  Store the result in the proper place

* Some instructions skip some phases
* Effective address calculation can be done in

the part of the decoding phase
* Storage of the operation result into a register * Storage of the operation result into a register 

is done automatically in the execution phase

==> 4-Stage Pipeline

[1]  FI:    Fetch an instruction from memory
[2]  DA:  Decode the instruction and calculate

the effective address of the operand
[3]  FO:  Fetch the operand

Computer Organization Computer Architecture

[3]  FO:  Fetch the operand
[4]  EX:  Execute the operation
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INSTRUCTION  PIPELINE
Instruction PipelinePipelining and Vector Processing

Execution of Three Instructions in a 4-Stage Pipeline Execution of Three Instructions in a 4-Stage Pipeline 

FI DA FO EXi

Conventional

FI DA FO EX

FI DA FO EX

i+1

i+2

Pipelined

FI DA FO EXi

FI DA FO EX

FI DA FO EX

i+1

i+2

Computer Organization Computer Architecture
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INSTRUCTION  EXECUTION  IN  A  4-STAGE  PIPELINE
Instruction PipelinePipelining and Vector Processing

Fetch instruction
from memory

Decode instruction
and calculate

effective address

Segment1:

Segment2:
effective address

Branch?

Fetch operand
from memory

yes
no

Segment3: from memory

Execute instruction

Interrupt?Interrupt
handling

yes

Segment4:

1 2 3 4 5 6 7 8 9 10 12 1311
FI DA FO EX1

Step:
Instruction

handling

Update PC

Empty pipe

no

FI DA FO EX1

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

2

3

4

5

FI

Instruction

(Branch)

Computer Organization Computer Architecture

FI DA FO EX

FI DA FO EX

FI DA FO EX

5

6

7
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MAJOR  HAZARDS  IN  PIPELINED  EXECUTION
Structural hazards(Resource Conflicts)

Instruction PipelinePipelining and Vector Processing

Structural hazards(Resource Conflicts)

Hardware Resources required by the instructions in 
simultaneous overlapped execution cannot be met

Data hazards (Data Dependency Conflicts)Data hazards (Data Dependency Conflicts)

An instruction scheduled to be executed in the pipeline requires the 
result of a previous instruction, which is not yet available

ADD DA B,C +

INC DA +1R1bubble

Data dependencyR1 <- B + C
R1 <- R1 + 1

Control hazards

JMP ID PC + PC Branch address dependency

Control hazards

Branches and other instructions that change the PC
make the fetch of the next instruction to be delayed

JMP ID PC + PC

bubble IF ID OF OE OS

Branch address dependency

Hazards in pipelines may make it      Pipeline Interlock: 

Computer Organization Computer Architecture

Hazards in pipelines may make it      
necessary to stall the pipeline

Pipeline Interlock: 
Detect Hazards Stall until it is cleared
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STRUCTURAL  HAZARDS
Structural Hazards

Instruction PipelinePipelining and Vector Processing

Structural Hazards
Occur when some resource has not been 
duplicated enough to allow all combinations 
of instructions in the pipeline to executeof instructions in the pipeline to execute

Example: With one memory-port, a data and an instruction fetch 
cannot be initiated in the same clockcannot be initiated in the same clock

FI DA FO EXi

i+1 FI DA FO EX

The Pipeline is stalled for a structural hazard

i+2 FI DA FO EXstallstall

The Pipeline is stalled for a structural hazard
<- Two Loads with one port memory

-> Two-port memory will serve without stall

Computer Organization Computer Architecture
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DATA  HAZARDS
Data Hazards

Instruction PipelinePipelining and Vector Processing

Data Hazards

Occurs when the execution of an instruction 
depends on the results of a previous instruction

ADD R1, R2, R3ADD R1, R2, R3
SUB R4, R1, R5

Data hazard can be dealt with either hardware 
techniques or software technique

Hardware Technique

Interlock
- hardware detects the data dependencies and delays the scheduling 

techniques or software technique

Interlock
- hardware detects the data dependencies and delays the scheduling 
of the dependent instruction by stalling enough clock cycles

Forwarding (bypassing, short-circuiting)
- Accomplished by a data path that routes a value from a source - Accomplished by a data path that routes a value from a source 
(usually an ALU) to a user, bypassing a designated register. This
allows the value to be produced to be used at an earlier stage in the
pipeline than would otherwise be possible 

Computer Organization Computer Architecture

Software Technique
Instruction Scheduling(compiler) for delayed load
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FORWARDING  HARDWARE
Instruction PipelinePipelining and Vector Processing

Register 
file

Example:

ADD R1, R2, R3
SUB R4, R1, R5

Result 

Bypass 
path

MUX MUX

SUB R4, R1, R5

3-stage Pipeline

I:  Instruction Fetch Result 
write bus

ALU

R4

I:  Instruction Fetch
A: Decode, Read Registers,

ALU Operations
E: Write the result to the 

destination register

ALU result buffer 

R4destination register

I A EADD

SUB I A E Without Bypassing

I A ESUB With Bypassing

Computer Organization Computer Architecture
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INSTRUCTION  SCHEDULING
Instruction PipelinePipelining and Vector Processing

a = b + c;
d = e - f;

Unscheduled code: Scheduled Code:Unscheduled code: Scheduled Code:
LW         Rb, b
LW         Rc, c
LW         Re, e

LW        Rb, b
LW        Rc, c
ADD      Ra, Rb, Rc LW         Re, e

ADD       Ra, Rb, Rc
LW         Rf, f
SW         a, Ra
SUB       Rd, Re, Rf

ADD      Ra, Rb, Rc
SW        a, Ra
LW        Re, e
LW        Rf, f
SUB      Rd, Re, Rf SUB       Rd, Re, Rf

SW         d, Rd
SUB      Rd, Re, Rf
SW        d, Rd

Delayed Load
A load requiring that the following instruction not use its result

Computer Organization Computer Architecture
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CONTROL  HAZARDS
Branch Instructions

Instruction PipelinePipelining and Vector Processing

Branch Instructions

- Branch target address is not known until
the branch instruction is completedthe branch instruction is completed

FI     DA    FO    EX

FI      DA     FO    EX

Branch
Instruction

Next
Instruction

Target address available

- Stall -> waste of cycle times

Dealing with Control Hazards

* Prefetch Target Instruction
* Branch Target Buffer
* Loop Buffer
* Branch Prediction

Computer Organization Computer Architecture

* Branch Prediction
* Delayed Branch
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CONTROL  HAZARDS
Instruction Pipeline

Prefetch Target Instruction

Pipelining and Vector Processing

Prefetch Target Instruction
– Fetch instructions in both streams, branch not taken and branch taken
– Both are saved until branch branch is executed. Then, select the right 

instruction stream and discard the wrong stream
Branch Target Buffer(BTB; Associative Memory)

– Entry:  Addr of previously executed branches; Target instruction 
and the next few instructions

– When fetching an instruction, search BTB.– When fetching an instruction, search BTB.
– If found, fetch the instruction stream in BTB; 
– If not, new stream is fetched and update BTB

Loop Buffer(High Speed Register file)
– Storage of entire loop that allows to execute a loop without accessing memory– Storage of entire loop that allows to execute a loop without accessing memory

Branch Prediction
– Guessing the branch condition, and fetch an instruction stream based on 

the guess. Correct guess eliminates the branch penaltythe guess. Correct guess eliminates the branch penalty
Delayed Branch

– Compiler detects the branch and rearranges the instruction sequence 
by inserting useful instructions that keep the pipeline busy 
in the presence of a branch instruction

Computer Organization Computer Architecture

in the presence of a branch instruction
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RISC  PIPELINE
RISC Pipeline

RISC

Pipelining and Vector Processing

RISC
- Machine with a very fast clock cycle that 
executes at the rate of one instruction per cycle
<- Simple Instruction Set

Fixed Length Instruction Format

Instruction Cycles of Three-Stage Instruction Pipeline

Fixed Length Instruction Format
Register-to-Register Operations 

Data Manipulation Instructions
I:       Instruction Fetch
A:     Decode, Read Registers, ALU Operations
E:     Write a RegisterE:     Write a Register

Load and Store Instructions
I:       Instruction Fetch
A:     Decode, Evaluate Effective AddressA:     Decode, Evaluate Effective Address
E:     Register-to-Memory or Memory-to-Register

Program Control Instructions
I:       Instruction Fetch

Computer Organization Computer Architecture

I:       Instruction Fetch
A:     Decode, Evaluate Branch Address
E:     Write Register(PC)
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DELAYED  LOAD
LOAD: R1  M[address 1]

RISC PipelinePipelining and Vector Processing

LOAD: R1  M[address 1]
LOAD: R2  M[address 2]
ADD: R3  R1 + R2
STORE: M[address 3]  R3

Three-segment pipeline timing
Pipeline timing with data conflict

clock cycle          1   2   3   4   5   6clock cycle          1   2   3   4   5   6
Load  R1           I    A  E
Load  R2                I    A  E
Add   R1+R2               I    A  E
Store  R3                          I   A   EStore  R3                          I   A   E

Pipeline timing with delayed load

clock cycle         1   2   3   4   5   6   7clock cycle         1   2   3   4   5   6   7
Load   R1        I    A  E
Load   R2             I    A  E
NOP                           I   A  E
Add  R1+R2                   I   A   E

The data dependency is taken
care by the compiler rather 
than the hardware

Computer Organization Computer Architecture

Add  R1+R2                   I   A   E
Store   R3                            I   A  E
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DELAYED  BRANCH
Compiler analyzes the instructions before and after 

RISC PipelinePipelining and Vector Processing

Compiler analyzes the instructions before and after 
the branch and rearranges the program sequence by 
inserting useful instructions in the delay steps

Using no-operation instructions
1
I

3 4 652Clock cycles:
1. Load A
2. Increment

7 8
E

I A E

9 10

Using no-operation instructions

4. Subtract
5. Branch to X

3. Add

6. NOP

I A E
I A E

I A E
I A E

7. NOP I A E7. NOP
8. Instr. in X

I A E
I A E

1 3 4 652Clock cycles: 7 8

Rearranging the instructions

1
I

3 4 652Clock cycles:
1. Load A
2. Increment

4. Add

7

3. Branch to X

8
E

I A E
I A E

I A E

Computer Organization Computer Architecture

4. Add
5. Subtract
6. Instr. in X

I A E
I A E

I A E
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VECTOR  PROCESSING
Vector ProcessingPipelining and Vector Processing

Vector Processing Applications
• Problems that can be efficiently formulated in terms of vectors

– Long-range weather forecasting– Long-range weather forecasting
– Petroleum explorations
– Seismic data analysis
– Medical diagnosis
– Aerodynamics and space flight simulations
– Artificial intelligence and expert systems
– Mapping the human genome
– Image processing– Image processing

Vector Processor (computer)
Ability to process vectors, and related data structures such as matricesAbility to process vectors, and related data structures such as matrices
and multi-dimensional arrays, much faster than conventional computers

Vector Processors may also be pipelined    

Computer Organization Computer Architecture

Vector Processors may also be pipelined    
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VECTOR  PROGRAMMING
Vector ProcessingPipelining and Vector Processing

DO  20  I = 1, 100
20     C(I) = B(I) + A(I)

Conventional computer

Initialize I = 0Initialize I = 0
20   Read A(I)

Read B(I)
Store C(I) = A(I) + B(I)
Increment I = i + 1Increment I = i + 1
If I  100 goto 20

Vector computerVector computer

C(1:100) = A(1:100) + B(1:100)

Computer Organization Computer Architecture
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VECTOR  INSTRUCTIONS
Vector ProcessingPipelining and Vector Processing

f1: V  V
f2: V  S
f3: V x V  V
f4: V x S  V

V: Vector operand
S: Scalar operand

Type Mnemonic Description (I = 1, ..., n)

f1        VSQR Vector square root          B(I)  SQR(A(I))
VSIN Vector sine B(I)  sin(A(I))
VCOM Vector complement         A(I)  A(I)VCOM Vector complement         A(I)  A(I)

f2        VSUM Vector summation           S   A(I)
VMAX Vector maximum S  max{A(I)}

f3        VADD Vector add C(I)  A(I) + B(I)
VMPY Vector multiply C(I)  A(I) * B(I)
VAND Vector AND C(I)  A(I) . B(I)
VLAR Vector larger C(I)  max(A(I),B(I))
VTGE Vector test > C(I)  0 if A(I) < B(I)

C(I)  1 if A(I) > B(I)
f4        SADD Vector-scalar add            B(I)  S + A(I)f4        SADD Vector-scalar add            B(I)  S + A(I)

SDIV Vector-scalar divide        B(I)  A(I) / S

Computer Organization Computer Architecture
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VECTOR  INSTRUCTION  FORMAT
Vector ProcessingPipelining and Vector Processing

Operation 
code

Base address 
source 1

Base address 
source 2

Base address 
destination

Vector  
length

Vector Instruction Format

code source 1 source 2 destination length

Pipeline for Inner Product

Source 
A

Pipeline for Inner Product

Source 
B

Multiplier 
pipeline

Adder 
pipeline

Computer Organization Computer Architecture
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MULTIPLE  MEMORY  MODULE  AND INTERLEAVING
Vector ProcessingPipelining and Vector Processing

Multiple Module Memory
Address bus

M0                    M1                  M2                   M3

AR AR AR AR

Memory
array

Memory
array

Memory
array

Memory
array

DR DR DR DR

Data bus

Address Interleaving

Different sets of addresses are assigned to
different memory modules

Data bus

Computer Organization Computer Architecture

different memory modules
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MULTIPROCESSORS
Multiprocessors

• Characteristics of Multiprocessors

• Interconnection Structures

• Interprocessor Arbitration• Interprocessor Arbitration

• Interprocessor Communication 
and Synchronizationand Synchronization

• Cache Coherence

Computer Organization Computer Architecture
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TERMINOLOGY
Characteristics of MultiprocessorsMultiprocessors

Parallel Computing

Simultaneous use of multiple processors, all componentsSimultaneous use of multiple processors, all components
of a single architecture, to solve a task. Typically processors identical,
single user (even if machine multiuser)

Distributed ComputingDistributed Computing

Use of a network of processors, each capable of being
viewed as a computer in its own right, to solve a problem. Processors viewed as a computer in its own right, to solve a problem. Processors 
may be heterogeneous, multiuser, usually individual task is assigned 
to a single processors

Concurrent ComputingConcurrent Computing

All of the above?

Computer Organization Computer Architecture
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TERMINOLOGY
Supercomputing

Characteristics of MultiprocessorsMultiprocessors

Supercomputing
Use of fastest, biggest machines to solve big, computationally 
intensive problems. Historically machines were vector computers, 
but parallel/vector or parallel becoming the norm

Pipelining
Breaking a task into steps performed by different units, and multiple 
inputs stream through the units, with next input starting in a unit when inputs stream through the units, with next input starting in a unit when 
previous input done with the unit but not necessarily done with the task

Vector Computing
Use of vector processors, where operation such as multiplyUse of vector processors, where operation such as multiply
broken into several steps, and is applied to a stream of operands
(“vectors”). Most common special case of pipelining

Systolic
Similar to pipelining, but units are not necessarily arranged linearly, 
steps are typically small and more numerous, performed in lockstep
fashion. Often used in special-purpose hardware such as image or signal 

Computer Organization Computer Architecture

fashion. Often used in special-purpose hardware such as image or signal 
processors
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SPEEDUP  AND  EFFICIENCY
A:  Given problem 

Characteristics of MultiprocessorsMultiprocessors

A:  Given problem 

T*(n):  Time of best sequential algorithm to solve an 
instance of A of size n on 1 processorinstance of A of size n on 1 processor

Tp(n):  Time needed by a given parallel algorithm 
and given parallel architecture to solve an 
instance of A of size n, using p processors

Note: T*(n)  T1(n)

Speedup: T*(n) / Tp(n) Speedup
Perfect SpeedupSpeedup: T*(n) / Tp(n)

Efficiency: T*(n) / [pTp(n)]

Perfect Speedup

Speedup should be between 0 and p, and 
Efficiency should be between 0 and 1

1    2    3    4    5    6    7    8    9    10
Processors

Computer Organization Computer Architecture

Efficiency should be between 0 and 1
Speedup is linear if there is a constant c > 0

so that speedup is always at least cp. 
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AMDAHL’S  LAW
Given a program

Characteristics of MultiprocessorsMultiprocessors

Given a program
f :  Fraction of time that represents operations 

that must be performed serially

Maximum Possible Speedup: S

S    , with p processorsf + (1 - f ) / p
1

f + (1 - f ) / p

S  <  1 / f               , with unlimited number of processors

- Ignores possibility of new algorithm, with much smaller f

- Ignores possibility that more of program is run from higher speed - Ignores possibility that more of program is run from higher speed 
memory such as Registers, Cache, Main Memory

- Often problem is scaled with number of processors, and f is a  
function of size which may be decreasing (Serial code may take 

Computer Organization Computer Architecture

function of size which may be decreasing (Serial code may take 
constant amount of time, independent of size)
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FLYNN’s  HARDWARE  TAXONOMY

I:   Instruction Stream M

Characteristics of MultiprocessorsMultiprocessors

SI:  Single Instruction Stream
- All processors are executing the same instruction in the same cycle

I:   Instruction Stream
D:  Data Stream

M
S           S[ ] I [   ] DM

- All processors are executing the same instruction in the same cycle
- Instruction may be conditional
- For Multiple processors, the control processor issues an instruction

MI:  Multiple Instruction Stream MI:  Multiple Instruction Stream 
- Different processors may be simultaneously 

executing different instructions
SD: Single Data Stream

- All of the processors are operating on the same - All of the processors are operating on the same 
data items at any given time

MD: Multiple Data Stream
- Different processors may be simultaneously- Different processors may be simultaneously

operating on different data items

SISD : standard serial computer

Computer Organization Computer Architecture

SISD : standard serial computer
MISD : very rare
MIMD and SIMD : Parallel processing computers
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COUPLING  OF  PROCESSORS
Characteristics of MultiprocessorsMultiprocessors

Tightly Coupled System
- Tasks and/or processors communicate in a highly synchronized - Tasks and/or processors communicate in a highly synchronized 

fashion
- Communicates through a common shared memory
- Shared memory system- Shared memory system

Loosely Coupled System
- Tasks or processors do not communicate in a 
synchronized fashionsynchronized fashion

- Communicates by message passing packets
- Overhead for data exchange is high
- Distributed memory system- Distributed memory system

Computer Organization Computer Architecture



228

Granularity of Parallelism

GRANULARITY  OF  PARALLELISM
Characteristics of MultiprocessorsMultiprocessors

Granularity of Parallelism

Coarse-grain

- A task is broken into a handful of pieces, each - A task is broken into a handful of pieces, each 
of which is executed by a powerful processor

- Processors may be heterogeneous
- Computation/communication ratio is very high- Computation/communication ratio is very high

Medium-grain

- Tens to few thousands of pieces- Tens to few thousands of pieces
- Processors typically run the same code 
- Computation/communication ratio is often hundreds or more

Fine-grain

- Thousands to perhaps millions of small pieces, executed by very 
small, simple processors or through pipelines

Computer Organization Computer Architecture

small, simple processors or through pipelines
- Processors typically have instructions broadcasted to them 
- Compute/communicate ratio often near unity
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MEMORY
Shared (Global) Memory

Characteristics of MultiprocessorsMultiprocessors

Shared (Global) Memory
- A Global Memory Space accessible by all processors
- Processors may also have some local memory

Distributed (Local, Message-Passing) MemoryDistributed (Local, Message-Passing) Memory
- All memory units are associated with processors 
- To retrieve information from another processor's 
memory a message must be sent there   

Uniform Memory  Uniform Memory  
- All processors take the same time to reach all memory locations

Nonuniform (NUMA) Memory
- Memory access is not uniform 

Memory
SHARED MEMORY

Network

DISTRIBUTED MEMORY

- Memory access is not uniform 

Network

Network

Computer Organization Computer Architecture
Processors Processors/Memory
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SHARED  MEMORY  MULTIPROCESSORS
M

Characteristics of MultiprocessorsMultiprocessors

Interconnection Network

. . .
M MM

Buses,
Multistage IN,
Crossbar Switch

. . .P PP

Crossbar Switch

Characteristics

All processors have equally direct access to one 
large memory address spacelarge memory address space

Example systems

- Bus and cache-based systems: Sequent Balance, Encore Multimax- Bus and cache-based systems: Sequent Balance, Encore Multimax
- Multistage IN-based systems: Ultracomputer, Butterfly, RP3, HEP
- Crossbar switch-based systems: C.mmp, Alliant FX/8

Limitations

Computer Organization Computer Architecture

Memory access latency; Hot spot problem
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MESSAGE-PASSING  MULTIPROCESSORS
Message-Passing Network Point-to-point connections

Characteristics of MultiprocessorsMultiprocessors

Message-Passing Network

. . .P PP

Point-to-point connections

Characteristics

M M M. . .

Characteristics

- Interconnected computers
- Each processor has its own memory, and 

communicate via message-passingcommunicate via message-passing

Example systems

- Tree structure: Teradata, DADO- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Limitations

Computer Organization Computer Architecture

Limitations

- Communication overhead;  Hard to programming
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INTERCONNECTION  STRUCTURES
Interconnection StructureMultiprocessors

* Time-Shared Common Bus
* Multiport Memory* Multiport Memory
* Crossbar Switch
* Multistage Switching Network
* Hypercube System 

Bus  Bus  
All processors (and memory) are connected to a 
common bus or busses
- Memory access is fairly uniform, but not very scalable- Memory access is fairly uniform, but not very scalable

Computer Organization Computer Architecture
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- A collection of signal lines that carry module-to-module communication

BUS
Interconnection StructureMultiprocessors

- A collection of signal lines that carry module-to-module communication
- Data highways connecting several digital system elements
Operations of Bus Devices

Bus

M3 S7 M6 S5 M4
S2

M3 wishes to communicate with S5

[1] M3 sends signals (address) on the bus that causes 
S5 to respondS5 to respond

[2] M3 sends data to S5  or S5 sends data to 
M3(determined by the command line)

Master Device: Device that initiates and controls the communicationMaster Device: Device that initiates and controls the communication
Slave Device: Responding device
Multiple-master buses 

-> Bus conflict 

Computer Organization Computer Architecture

-> Bus conflict 
-> need bus arbitration
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SYSTEM  BUS  STRUCTURE  FOR  MULTIPROCESSORS
Interconnection StructureMultiprocessors

Local Bus

Common
Shared
Memory

System
Bus

Controller
CPU IOP Local

Memory

SYSTEM BUS

System
Bus 

Controller
CPU IOP Local

Memory
System

Bus
Controller

CPU Local
Memory

Local Bus Local Bus

Computer Organization Computer Architecture

Local Bus Local Bus
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MULTIPORT  MEMORY
Interconnection StructureMultiprocessors

Multiport Memory Module
- Each port serves a CPU

Memory Module Control LogicMemory Module Control Logic
- Each memory module has control logic
- Resolve memory module conflicts Fixed priority among CPUs

AdvantagesAdvantages
- Multiple paths -> high transfer rate

Disadvantages
- Memory control logic MM 1 MM 2 MM 3 MM 4

Memory Modules

- Memory control logic
- Large number of cables and 

connections
CPU 1

CPU 2

CPU 3

Computer Organization Computer Architecture

CPU 4
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CROSSBAR  SWITCH
Interconnection Structure

Memory modules

Multiprocessors

MM1

CPU1

Memory modules

MM2 MM3 MM4

CPU2

CPU3

CPU4

Block Diagram of Crossbar Switch

} data,address, and

data

address

}
}

data,address, and
control from CPU 1

data,address, and
control from CPU 2

Multiplexers
andMemory

Module

address

R/W

memory
enable

}

}
control from CPU 2

data,address, and
control from CPU 3

and
arbitration

logic

Computer Organization Computer Architecture

} data,address, and
control from CPU 4
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MULTISTAGE  SWITCHING  NETWORK
Interconnection StructureMultiprocessors

0 0

Interstage Switch

A

B

0

1

A

B

0

1

A connected to 0 A connected to 1

A 0 A 0

B
1

B connected to 0

B
1

B connected to 1

Computer Organization Computer Architecture
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MULTISTAGE  INTERCONNECTION  NETWORK
Interconnection Structure

0 000Binary Tree with 2 x 2 Switches

Multiprocessors

0

1
000

001

0

1
010

0

1

0P1

Binary Tree with 2 x 2 Switches

1
011

0

1
100

101

1

0

1

P1

P2

0

1
110

111
8x8 Omega Switching Network

0 0000
1

2
3

000
001

010
011

4
5

6

100
101

110
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6
7

110
111
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HYPERCUBE  INTERCONNECTION
Interconnection StructureMultiprocessors

- p = 2n

- processors are conceptually on the corners of a 

n-dimensional hypercube (binary n-cube)

- processors are conceptually on the corners of a 
n-dimensional hypercube, and each is directly 
connected to the n neighboring nodes

- Degree = n- Degree = n

010

011 111

11 010
010

110

101
001

One-cube Two-cube Three-cube

1 00 10 100

001

000

Computer Organization Computer Architecture

One-cube Two-cube Three-cube
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INTERPROCESSOR  ARBITRATION
Interprocessor ArbitrationMultiprocessors

Bus
Board level bus
Backplane level bus
Interface level busInterface level bus

System Bus - A Backplane level bus

- Printed Circuit Board- Printed Circuit Board
- Connects CPU, IOP, and Memory
- Each of CPU, IOP, and Memory board can be 

plugged into a slot in the backplane(system bus)
- Bus signals are grouped into 3 groups- Bus signals are grouped into 3 groups

Data, Address, and Control(plus power)
e.g. IEEE standard 796 bus

- 86 lines
Data:        16(multiple of 8)
Address:  24

- Only one of CPU, IOP, and Memory can be 
granted to use the bus at a time

Address:  24
Control:    26
Power:      20

Computer Organization Computer Architecture

granted to use the bus at a time
- Arbitration mechanism is needed to handle 

multiple requests
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SYNCHRONOUS  &  ASYNCHRONOUS  DATA  TRANSFER

Synchronous Bus

Interprocessor ArbitrationMultiprocessors

Synchronous Bus
Each data item is transferred over a time slice
known to both source and destination unit

- Common clock source
- Or separate clock and synchronization signal- Or separate clock and synchronization signal
is transmitted periodically to synchronize
the clocks in the system

Asynchronous BusAsynchronous Bus

* Each data item is transferred by Handshake
mechanism  

- Unit that transmits the data transmits a control
mechanism  

- Unit that transmits the data transmits a control
signal that indicates the presence of data

- Unit that receiving the data responds with 
another control signal to acknowledge theanother control signal to acknowledge the
receipt of the data

* Strobe pulse - supplied by one of the units to 
indicate to the other unit when the data transfer

Computer Organization Computer Architecture

indicate to the other unit when the data transfer
has to occur
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BUS  SIGNALS
- address

Interprocessor ArbitrationMultiprocessors

Bus signal allocation
- address
- data
- control
- arbitration
- interrupt
- timing- timing
- power, ground

IEEE Standard 796 Multibus Signals

Data and address
Data lines (16 lines) DATA0 - DATA15
Address lines (24 lines) ADRS0 - ADRS23

Data transferData transfer
Memory read MRDC
Memory write MWTC
IO read IORC
IO write IOWCIO write IOWC
Transfer acknowledge TACK  (XACK)

Interrupt control
Interrupt request INT0 - INT7
interrupt acknowledge INTA

Computer Organization Computer Architecture

interrupt acknowledge INTA
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BUS  SIGNALS
Interprocessor ArbitrationMultiprocessors

IEEE Standard 796 Multibus Signals (Cont’d)

Miscellaneous control
Master clock CCLK
System initialization INIT
Byte high enable BHENByte high enable BHEN
Memory inhibit (2 lines) INH1 - INH2
Bus lock LOCK

Bus arbitration
Bus request BREQBus request BREQ
Common bus request CBRQ
Bus busy BUSY
Bus clock BCLK
Bus priority in BPRNBus priority in BPRN
Bus priority out BPRO

Power and ground (20 lines)

Computer Organization Computer Architecture
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INTERPROCESSOR  ARBITRATION STATIC  ARBITRATION

Serial Arbitration Procedure

Interprocessor ArbitrationMultiprocessors

Serial Arbitration Procedure

BusPI PO BusPI PO BusPI PO BusPI PO

Highest
priority

1

To next
arbiter

Parallel Arbitration Procedure

Bus
arbiter 1

PI PO Bus
arbiter 2

PI PO Bus
arbiter 3

PI PO Bus
arbiter 4 

PI PO1

Bus busy line

Parallel Arbitration Procedure
Bus

arbiter 1
Ack Req

Bus
arbiter 2

Ack Req

Bus
arbiter 3

Ack Req

Bus
arbiter 4

Ack Req

Bus busy lineBus busy line

4 x 24 x 2
Priority encoder

2 x 4
Decoder

Computer Organization Computer Architecture

Decoder
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INTERPROCESSOR  ARBITRATION  DYNAMIC  ARBITRATION

Priorities of the units can be dynamically changeable

Interprocessor ArbitrationMultiprocessors

Priorities of the units can be dynamically changeable
while the system is in operation

Time Slice
Fixed length time slice is given sequentially to

Time Slice
Fixed length time slice is given sequentially to
each processor, round-robin fashion

PollingPolling
Unit address polling - Bus controller advances
the address to identify the requesting unit

LRULRU

FIFO

Rotating Daisy ChainRotating Daisy Chain
Conventional Daisy Chain - Highest priority to the

nearest unit to the bus controller
Rotating Daisy Chain - Highest priority to the unit

that is nearest to the unit that has

Computer Organization Computer Architecture

that is nearest to the unit that has
most recently accessed the bus(it 
becomes the bus controller)



246

INTERPROCESSOR  COMMUNICATION 
Interprocessor Communication

Interprocessor Communication and Synchronization

Shared Memory

Multiprocessors

Interprocessor Communication Shared Memory

Communication Area

Receiver(s)
Mark

Sending
Processor

Receiving
Processor

ReceivingReceiver(s) Receiving
Processor

Receiving

.

..
Message

Receiving
Processor

Interrupt

Shared Memory

Mark

Sending
Processor

Receiving
Processor

Instruction

Communication Area

Receiver(s)
Mark

Receiving
Processor

.

..
Message

Instruction

Computer Organization Computer Architecture

Receiving
Processor
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INTERPROCESSOR  SYNCHRONIZATION
Synchronization

Interprocessor Communication and SynchronizationMultiprocessors

Synchronization
Communication of control information between processors 

- To enforce the correct sequence of processes
- To ensure mutually exclusive access to shared writable data 

Hardware Implementation

Mutual Exclusion with a Semaphore
Mutual ExclusionMutual Exclusion

- One processor to exclude or lock out access to shared resource by 
other processors when it is in a Critical Section

- Critical Section is a program sequence that, 
once begun, must complete execution beforeonce begun, must complete execution before
another processor accesses the same shared resource

Semaphore
- A binary variable- A binary variable
- 1:  A processor is executing a critical section,

that not available to other processors
0:  Available to any requesting processor

- Software controlled Flag that is stored in 

Computer Organization Computer Architecture

- Software controlled Flag that is stored in 
memory that all processors can be access
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SEMAPHORE
Testing and Setting the Semaphore

Interprocessor Communication and SynchronizationMultiprocessors

Testing and Setting the Semaphore

- Avoid two or more processors test or set the same semaphore
- May cause two or more processors enter the

same critical section at the same timesame critical section at the same time
- Must be implemented with an indivisible operation

R <- M[SEM]             / Test semaphore /
M[SEM] <- 1              / Set semaphore /M[SEM] <- 1              / Set semaphore /

These are being done while locked, so that other processors cannot test 
and set while current processor is being executing these instructions

If R=1, another processor is executing the
critical section, the processor executed
this instruction does not access the 
shared memoryshared memory

If R=0, available for access, set the semaphore to 1 and access

The last instruction in the program must clear the semaphore

Computer Organization Computer Architecture

The last instruction in the program must clear the semaphore
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CACHE  COHERENCE
Cache Coherence

Caches are Coherent X = 52 Main memory

Multiprocessors

Caches are Coherent X = 52

X = 52 X = 52 X = 52

Main memory

Caches

Bus

Cache Incoherency in 

X = 52

P1

X = 52

P2

X = 52

P3

Caches

Processors

Cache Incoherency in 
Write Through Policy X = 120

X = 120 X = 52 X = 52

Main memory

Caches

Bus

Cache Incoherency  in Write Back Policy

X = 120

P1

X = 52

P2

X = 52

P3

Caches

Processors

X = 52 Main memoryCache Incoherency  in Write Back Policy X = 52

X = 120 X = 52 X = 52

Main memory

Caches

Bus

Computer Organization Computer Architecture

X = 120

P1

X = 52

P2

X = 52

P3

Caches

Processors
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MAINTAINING  CACHE  COHERENCY

Shared Cache

Cache CoherenceMultiprocessors

Shared Cache
- Disallow private cache
- Access time delay

Software ApproachesSoftware Approaches
* Read-Only Data are Cacheable
- Private Cache is for Read-Only data
- Shared Writable Data are not cacheable
- Compiler tags data as cacheable and noncacheable
- Degrade performance due to software overhead- Degrade performance due to software overhead

* Centralized Global Table
- Status of each memory block is maintained in CGT:  RO(Read-Only); RW(Read and Write)
- All caches can have copies of RO blocks - All caches can have copies of RO blocks 
- Only one cache can have a copy of RW block

Hardware Approaches 
* Snoopy Cache Controller* Snoopy Cache Controller

- Cache Controllers monitor all the bus requests from CPUs and  IOPs
- All caches attached to the bus monitor the write operations 
- When a word in a cache is written, memory is also updated (write through)
- Local snoopy controllers in all other caches check their memory  to determine if they have 

Computer Organization Computer Architecture

- Local snoopy controllers in all other caches check their memory  to determine if they have 
a copy of that word; If they have, that location is marked invalid(future reference to
this location causes cache miss)
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PARALLEL  COMPUTING

Grosche’s Law

Parallel ComputingMultiprocessors

Grosche’s Law

Grosch’s Law states that the speed of computers is proportional to the 
square of their cost. Thus if you are looking for a fast computer, you are 
better off spending your money buying one large computer than two better off spending your money buying one large computer than two 
small computers and connecting them.
Grosch’s Law is true within classes of computers,  but not true between 
classes.  Computers may be priced according to Groach’s Law, but the
Law cannot be true asymptotically.Law cannot be true asymptotically.

Minsky’s ConjectureMinsky’s Conjecture

Minsky’s conjecture states that the speedup achievable
by a parallel computer increases as the logarithm of the
number of processing elements,thus making large-scalenumber of processing elements,thus making large-scale
parallelism unproductive.

Many experimental results have shown linear speedup for over 
100 processors.

Computer Organization Computer Architecture
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PARALLEL  COMPUTING
Parallel Computing

History

Multiprocessors

History

History tells us that the speed of traditional single CPU
Computers has increased 10 folds every 5 years.
Why should great effort be expended to devise a parallel
Computers has increased 10 folds every 5 years.
Why should great effort be expended to devise a parallel
computer that will perform tasks 10 times faster when, 
by the time the new architecture is developed and 
implemented, single CPU computers will be just as fast.

Amdahl’s Law

implemented, single CPU computers will be just as fast.
Utilizing parallelism is better than waiting.

Amdahl’s Law

A small number of sequential operations can effectively
limit the speedup of a parallel algorithm.
Let f be the fraction of operations in a computation that must be performed sequentially, Let f be the fraction of operations in a computation that must be performed sequentially, 
where 0 < f < 1.  Then the maximum speedup S achievable by a parallel computer with p processors 
performing the computation is  S < 1 / [f + (1 - f) / p]. For example, if 10% of the computation must be 
performed sequentially, then the maximum speedup achievable is 10, no matter how many
processors a parallel computer has.

Computer Organization Computer Architecture

n 

There exist some parallel algorithms with almost no sequential operations. As the problem size(n) 
increases, f becomes smaller (f -> 0 as n->In this case,   lim  S = p.
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PARALLEL  COMPUTING
Parallel ComputingMultiprocessors

Pipelined Computers are Sufficient

Most supercomputers are vector computers, and most of the successes 
attributed to supercomputers have accomplished on pipelined vector attributed to supercomputers have accomplished on pipelined vector 
processors, especially Cray=1 and Cyber-205.

If only vector operations can be executed at high speed, supercomputers
will not be able to tackle a large number of important problems.  Thewill not be able to tackle a large number of important problems.  The
latest supercomputers incorporate both pipelining and high level 
parallelism (e.g., Cray-2)

Software InertiaSoftware Inertia

Billions of dollars worth of FORTRAN software exists.
Who will rewrite them? Virtually no programmers have 
any experience with a machine other than a single CPUany experience with a machine other than a single CPU
computer. Who will retrain them ?

Computer Organization Computer Architecture
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INTERCONNECTION  NETWORKS
Interconnection StructureMultiprocessors

Switching Network (Dynamic Network)
Processors (and Memory) are connected to routing
switches like in telephone systemswitches like in telephone system
- Switches might have queues(combining logic), 

which improve functionality but increase latency
- Switch settings may be determined by message

headers or preset by controllerheaders or preset by controller
- Connections can be packet-switched or circuit-

switched(remain connected as long as it is needed)
- Usually NUMA, blocking, often scalable and upgradable

Point-Point (Static Network)
Processors are directly connected to only certain other processors and 
must go multiple hops to get to additional processors

- Usually distributed memory
- Hardware may handle only single hops, or multiple hops
- Software may mask hardware limitations
- Latency is related to graph diameter, among many other factors

Computer Organization Computer Architecture

- Latency is related to graph diameter, among many other factors
- Usually NUMA, nonblocking, scalable, upgradable
- Ring, Mesh, Torus, Hypercube, Binary Tree
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INTERCONNECTION  NETWORKS
Interconnection StructureMultiprocessors

Multistage Interconnect

Switch Processor

BusBus

Computer Organization Computer Architecture
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INTERCONNECTION  NETWORKS
Interconnection StructureMultiprocessors

Static Topology - Direct Connection

- Provide a direct inter-processor communication path
- Usually for distributed-memory multiprocessor- Usually for distributed-memory multiprocessor

Dynamic Topology - Indirect Connection

- Provide a physically separate switching network- Provide a physically separate switching network
for inter-processor communication

- Usually for shared-memory multiprocessor

Direct ConnectionDirect Connection
Interconnection Network  

A graph G(V,E) A graph G(V,E) 
V: a set of processors (nodes)
E: a set of wires (edges)

Performance Measures:   - degree, diameter, etc

Computer Organization Computer Architecture

Performance Measures:   - degree, diameter, etc



257

INTERCONNECTION  NETWORKS

Complete connection

Interconnection StructureMultiprocessors

Complete connection

- Every processor is directly connected to every other processors
- Diameter = 1,     Degree = p - 1- Diameter = 1,     Degree = p - 1
- # of wires =  p ( p - 1 ) / 2;  dominant cost
- Fan-in/fanout limitation makes it impractical for large p
- Interesting as a theoretical model because algorithm bounds for this - Interesting as a theoretical model because algorithm bounds for this 

model are automatically lower bounds for all direct connection machines

Ring

- Degree = 2,   (not a function of p)
- Diameter =   p/2 

Computer Organization Computer Architecture
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INTERCONNECTION  NETWORKS
Interconnection StructureMultiprocessors

• 2-Mesh
. . .

m

m   = p2m

. . .

- Degree = 4
- Diameter = 2(m - 1)
- In general,  an n-dimensional mesh has- In general,  an n-dimensional mesh has

diameter = d ( p1/n - 1)
- Diameter can be halved by having wrap-around 
connections (-> Torus)

Computer Organization Computer Architecture

connections (-> Torus)
- Ring is a 1-dimensional mesh with wrap-around 
connection
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INTERCONNECTION  NETWORK
Interconnection StructureMultiprocessors

Binary TreeBinary Tree

- Degree = 3
- Diameter = 2 log p + 1

2

Computer Organization Computer Architecture
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MIN  SPACE
Interconnection StructureMultiprocessors

Banyan network
=(unique path network)

PM2I network

Multiple Path Network

M I N

• Baseline [Wu80]
• Flip [Batcher76]
• Indirect binary

n-cube [Peas77]

Delta network [Patel81] PM2I network

• Data Manipulator
[Feng74]

• Augmented DM
[Siegel78]

• Inverse ADMn-cube [Peas77]
• Omega [Lawrie75]
• Regular SW banyan

[Goke73]

[Siegel78]
• Inverse ADM

[Siegel79]
• Gamma [Parker84]

• Extra stage Cube
[Adams82][Adams82]

• Replicated/Dialted
Delta netork

[Kruskal83]
• B-delta [Yoon88]

Permutation/Sorting Network
( N ! )

• Clos network [53]
• Benes network [62]
• Batcher sorting

Computer Organization Computer Architecture

• Batcher sorting
network [68]
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SOME  CURRENT  PARALLEL  COMPUTERS
Multiprocessors

DM-SIMD
• AMT DAP
• Goodyear MPP
• Thinking Machines CM series• Thinking Machines CM series
• MasPar MP1
• IBM GF11

SM-MIMDSM-MIMD
• Alliant FX
• BBN Butterfly
• Encore Multimax
• Sequent Balance/Symmetry• Sequent Balance/Symmetry
• CRAY 2, X-MP, Y-MP
• IBM RP3
• U. Illinois CEDAR

DM-MIMD
• Intel iPSC series, Delta machine
• NCUBE series
• Meiko Computing Surface

Computer Organization Computer Architecture

• Meiko Computing Surface
• Carnegie-Mellon/ Intel iWarp


